UBE2T resolves transcription-replication conflicts and protects common fragile sites in primordial germ cells

Findlay JK, Hutt KJ, Hickey M, Anderson RA (2015) How Is the number of primordial follicles in the ovarian reserve established. Biol Reprod 93:111

Article  PubMed  Google Scholar 

Bolcun-Filas E, Rinaldi VD, White ME, Schimenti JC (2014) Reversal of female infertility by Chk2 ablation reveals the oocyte DNA damage checkpoint pathway. Science 343:533–536

Article  CAS  PubMed  PubMed Central  Google Scholar 

Musson R, Gąsior Ł, Bisogno S, Ptak GE (2022) DNA damage in preimplantation embryos and gametes: specification, clinical relevance and repair strategies. Hum Reprod Update 28:376–399

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruth KS, Day FR, Hussain J et al (2021) Genetic insights into biological mechanisms governing human ovarian ageing. Nature 596:393–397

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsui V, Crismani W (2019) The fanconi anemia pathway and fertility. Trends Genet 35:199–214

Article  CAS  PubMed  Google Scholar 

Luo Y, Hartford SA, Zeng R, Southard TL, Shima N, Schimenti JC (2014) Hypersensitivity of primordial germ cells to compromised replication-associated DNA repair involves ATM-p53-p21 signaling. PLoS Genet 10:e1004471

Article  PubMed  PubMed Central  Google Scholar 

Hill RJ, Crossan GP (2019) DNA cross-link repair safeguards genomic stability during premeiotic germ cell development. Nat Genet 51:1283–1294

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ceccaldi R, Sarangi P, D’Andrea AD (2016) The fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol 17:337–349

Article  CAS  PubMed  Google Scholar 

Mamrak NE, Shimamura A, Howlett NG (2017) Recent discoveries in the molecular pathogenesis of the inherited bone marrow failure syndrome fanconi anemia. Blood Rev 31:93–99

Article  CAS  PubMed  Google Scholar 

Howlett NG, Taniguchi T, Durkin SG, D’Andrea AD, Glover TW (2005) The fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum Mol Genet 14:693–701

Article  CAS  PubMed  Google Scholar 

Luebben SW, Kawabata T, Johnson CS, O’Sullivan MG, Shima N (2014) A concomitant loss of dormant origins and FANCC exacerbates genome instability by impairing DNA replication fork progression. Nucleic Acids Res 42:5605–5615

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M (2011) Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145:529–542

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schlacher K, Wu H, Jasin M (2012) A distinct replication fork protection pathway connects fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22:106–116

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gómez-González B, Aguilera A (2019) Transcription-mediated replication hindrance: a major driver of genome instability. Genes Dev 33:1008–1026

Article  PubMed  PubMed Central  Google Scholar 

Roques C, Coulombe Y, Delannoy M et al (2009) MRE11-RAD50-NBS1 is a critical regulator of FANCD2 stability and function during DNA double-strand break repair. EMBO J 28:2400–2413

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yeo JE, Lee EH, Hendrickson EA, Sobeck A (2014) CtIP mediates replication fork recovery in a FANCD2-regulated manner. Hum Mol Genet 23:3695–3705

Article  CAS  PubMed  PubMed Central  Google Scholar 

García-Muse T, Aguilera A (2016) Transcription-replication conflicts: how they occur and how they are resolved. Nat Rev Mol Cell Biol 17:553–563

Article  PubMed  Google Scholar 

García-Rubio ML, Pérez-Calero C, Barroso SI et al (2015) The fanconi anemia pathway protects genome integrity from R-loops. PLoS Genet 11:e1005674

Article  PubMed  PubMed Central  Google Scholar 

Schwab RA, Nieminuszczy J, Shah F et al (2015) The fanconi anemia pathway maintains genome stability by coordinating replication and transcription. Mol Cell 60:351–361

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li S, Wu X (2020) Common fragile sites: protection and repair. Cell Biosci 10:29

Article  PubMed  PubMed Central  Google Scholar 

Le TB, Millot GA, Blin ME, Brison O, Dutrillaux B, Debatisse M (2013) Common fragile site profiling in epithelial and erythroid cells reveals that most recurrent cancer deletions lie in fragile sites hosting large genes. Cell Rep 4:420–428

Article  Google Scholar 

Debatisse M, Le TB, Letessier A, Dutrillaux B, Brison O (2012) Common fragile sites: mechanisms of instability revisited. Trends Genet 28:22–32

Article  CAS  PubMed  Google Scholar 

Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16:2–9

Article  CAS  PubMed  PubMed Central  Google Scholar 

El AE, Gerbault-Seureau M, Muleris M, Dutrillaux B, Debatisse M (2005) Premature condensation induces breaks at the interface of early and late replicating chromosome bands bearing common fragile sites. Proc Natl Acad Sci U S A 102:18069–18074

Article  Google Scholar 

Minocherhomji S, Ying S, Bjerregaard VA et al (2015) Replication stress activates DNA repair synthesis in mitosis. Nature 528:286–290

Article  CAS  PubMed  Google Scholar 

Bhowmick R, Minocherhomji S, Hickson ID (2016) RAD52 facilitates mitotic DNA synthesis following replication stress. Mol Cell 64:1117–1126

Article  CAS  PubMed  Google Scholar 

Naim V, Wilhelm T, Debatisse M, Rosselli F (2013) ERCC1 and MUS81-EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis. Nat Cell Biol 15:1008–1015

Article  CAS  PubMed  Google Scholar 

Chan KL, Palmai-Pallag T, Ying S, Hickson ID (2009) Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol 11:753–760

Article  CAS  PubMed  Google Scholar 

Harrigan JA, Belotserkovskaya R, Coates J et al (2011) Replication stress induces 53BP1-containing OPT domains in G1 cells. J Cell Biol 193:97–108

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lukas C, Savic V, Bekker-Jensen S et al (2011) 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol 13:243–253

Article  CAS  PubMed  Google Scholar 

Graber-Feesl CL, Pederson KD, Aney KJ, Shima N (2019) Mitotic DNA synthesis is differentially regulated between cancer and noncancerous cells. Mol Cancer Res 17:1687–1698

Article  CAS  PubMed  Google Scholar 

Alpi A, Langevin F, Mosedale G, Machida YJ, Dutta A, Patel KJ (2007) UBE2T, the fanconi anemia core complex, and FANCD2 are recruited independently to chromatin: a basis for the regulation of FANCD2 monoubiquitination. Mol Cell Biol 27:8421–8430

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lewis TW, Barthelemy JR, Virts EL et al (2019) Deficiency of the Fanconi anemia E2 ubiqitin conjugase UBE2T only partially abrogates Alu-mediated recombination in a new model of homology dependent recombination. Nucleic Acids Res 47:3503–3520

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spiller CM, Bowles J, Koopman P (2012) Regulation of germ cell meiosis in the fetal ovary. Int J Dev Biol 56:779–787

Article  CAS  PubMed  Google Scholar 

Vanni VS, Campo G, Cioffi R et al (2022) The neglected members of the family: non-BRCA mutations in the fanconi anemia/BRCA pathway and reproduction. Hum Reprod Update 28:296–311

Article  CAS  PubMed  Google Scholar 

Bremer S, Vogel R (1999) Pluripotent stem cells of the mouse as a potential in vitro model for mammalian germ cells. Sister chromatid exchanges induced by MMC and ENU in undifferentiated cell lines compared to differentiated cell lines. Mutat Res 444:97–102

Article  CAS  PubMed 

留言 (0)

沒有登入
gif