Inhibition of LXR controls the polarization of human inflammatory macrophages through upregulation of MAFB

Hoeffel G, Ginhoux F (2018) Fetal monocytes and the origins of tissue-resident macrophages. Cell Immunol 330:5–15. https://doi.org/10.1016/j.cellimm.2018.01.001

Article  CAS  PubMed  Google Scholar 

Ruffell B, Coussens LM (2015) Macrophages and therapeutic resistance in cancer. Cancer Cell 27:462–472. https://doi.org/10.1016/j.ccell.2015.02.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lavin Y, Mortha A, Rahman A, Merad M (2015) Regulation of macrophage development and function in peripheral tissues. Nat Rev Immunol 15:731–744. https://doi.org/10.1038/nri3920

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schultze JL (2016) Reprogramming of macrophages - New opportunities for therapeutic targeting. Curr Opin Pharmacol 26:10–15. https://doi.org/10.1016/j.coph.2015.09.007

Article  CAS  PubMed  Google Scholar 

Caescu CI, Guo X, Tesfa L et al (2015) Colony stimulating factor-1 receptor signaling networks inhibit mouse macrophage inflammatory responses by induction of microRNA-21. Blood 125:e1–e13. https://doi.org/10.1182/blood-2014-10-608000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Overmeire E, Stijlemans B, Heymann F et al (2016) M-CSF and GM-CSF receptor signaling differentially regulate monocyte maturation and macrophage polarization in the tumor microenvironment. Cancer Res 76:35–42. https://doi.org/10.1158/0008-5472.CAN-15-0869

Article  CAS  PubMed  Google Scholar 

Fleetwood AJ, Dinh H, Cook AD et al (2009) GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on Type I interferon signaling. J Leukoc Biol 86:411–421. https://doi.org/10.1189/jlb.1108702

Article  CAS  PubMed  Google Scholar 

Nowicki A, Szenajch J, Ostrowska G et al (1996) Impaired tumor growth in colony-stimulating factor 1 (CSF-1)-deficient, macrophage-deficient op/op mouse: evidence for a role of CSF-1-dependent macrophages in formation of tumor stroma. Int J Cancer 65:112–119. https://doi.org/10.1002/(SICI)1097-0215(19960103)65:1%3c112::AID-IJC19%3e3.0.CO;2-I

Article  CAS  PubMed  Google Scholar 

Verreck FAW, De Boer T, Langenberg DML et al (2004) Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci U S A 101:4560–4565. https://doi.org/10.1073/pnas.0400983101

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sierra-Filardi E, Puig-Kröger A, Blanco FJ et al (2011) Activin A skews macrophage polarization by promoting a proinflammatory phenotype and inhibiting the acquisition of anti-inflammatory macrophage markers. Blood 117:5092–5101. https://doi.org/10.1182/blood-2010-09-306993

Article  CAS  PubMed  Google Scholar 

Kinoshita M, Uchida T, Sato A et al (2010) Characterization of two F4/80-positive Kupffer cell subsets by their function and phenotype in mice. J Hepatol 53:903–910. https://doi.org/10.1016/j.jhep.2010.04.037

Article  CAS  PubMed  Google Scholar 

Movita D, Kreefft K, Biesta P et al (2012) Kupffer cells express a unique combination of phenotypic and functional characteristics compared with splenic and peritoneal macrophages. J Leukoc Biol 92:723–733. https://doi.org/10.1189/jlb.1111566

Article  CAS  PubMed  Google Scholar 

Pyonteck SM, Akkari L, Schuhmacher AJ et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19:1264–1272. https://doi.org/10.1038/nm.3337

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pyonteck SM, Gadea BB, Wang HW et al (2012) Deficiency of the macrophage growth factor CSF-1 disrupts pancreatic neuroendocrine tumor development. Oncogene 31:1459–1467. https://doi.org/10.1038/onc.2011.337

Article  CAS  PubMed  Google Scholar 

Amemiya H, Kono H, Fujii H (2011) Liver regeneration is impaired in macrophage colony stimulating factor deficient mice after partial hepatectomy: The role of M-CSF-induced macrophages. J Surg Res 165:59–67. https://doi.org/10.1016/j.jss.2009.08.008

Article  CAS  PubMed  Google Scholar 

Kubota Y, Takubo K, Shimizu T et al (2009) M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J Exp Med 206:1089–1102. https://doi.org/10.1084/jem.20081605

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fleetwood AJ, Lawrence T, Hamilton JA, Cook AD (2007) Granulocyte-Macrophage Colony-Stimulating Factor (CSF) and Macrophage CSF-Dependent Macrophage Phenotypes Display Differences in Cytokine Profiles and Transcription Factor Activities: Implications for CSF Blockade in Inflammation. J Immunol 178:5245–5252. https://doi.org/10.4049/jimmunol.178.8.5245

Article  CAS  PubMed  Google Scholar 

Lacey DC, Achuthan A, Fleetwood AJ et al (2012) Defining GM-CSF- and Macrophage-CSF-Dependent Macrophage Responses by In Vitro Models. J Immunol 188:5752–5765

Article  CAS  PubMed  Google Scholar 

Gonzalez-Dominguez E, Dominguez-Soto A, Nieto C et al (2016) Atypical Activin A and IL-10 Production Impairs Human CD16+ Monocyte Differentiation into Anti-Inflammatory Macrophages. J Immunol 196:1327–1337. https://doi.org/10.4049/jimmunol.1501177

Article  CAS  PubMed  Google Scholar 

Gonzalez-Dominguez E, Samaniego R, Flores-Sevilla JL et al (2015) CD163L1 and CLEC5A discriminate subsets of human resident and inflammatory macrophages in vivo. J Leukoc Biol 98:453–466. https://doi.org/10.1189/jlb.3hi1114-531r

Article  CAS  PubMed  Google Scholar 

Palacios BS, Estrada-Capetillo L, Izquierdo E et al (2015) Macrophages from the synovium of active rheumatoid arthritis exhibit an activin a-dependent pro-inflammatory profile. J Pathol 235:515–526. https://doi.org/10.1002/path.4466

Article  CAS  Google Scholar 

de las Casas-Engel M, Domínguez-Soto A, Sierra-Filardi E, et al (2013) Serotonin Skews Human Macrophage Polarization through HTR 2B and HTR 7. J Immunol 190:2301–2310. https://doi.org/10.4049/jimmunol.1201133

Article  CAS  PubMed  Google Scholar 

Cuevas VD, Anta L, Samaniego R et al (2017) MAFB Determines Human Macrophage Anti-Inflammatory Polarization: Relevance for the Pathogenic Mechanisms Operating in Multicentric Carpotarsal Osteolysis. J Immunol 198:2070–2081. https://doi.org/10.4049/jimmunol.1601667

Article  CAS  PubMed  Google Scholar 

Kim H (2017) The transcription factor MafB promotes anti-inflammatory M2 polarization and cholesterol efflux in macrophages. Sci Rep 7:. https://doi.org/10.1038/s41598-017-07381-8

Kelly LM, Englmeier U, Lafon I et al (2000) MafB is an inducer of monocytic differentiation. EMBO J 19:1987–1997. https://doi.org/10.1093/emboj/19.9.1987

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarrazin S, Mossadegh-Keller N, Fukao T et al (2009) MafB restricts M-CSF-dependent myeloid commitment divisions of hematopoietic stem cells. Cell 138:300–313. https://doi.org/10.1016/j.cell.2009.04.057

Article  CAS  PubMed  Google Scholar 

Vega MA, Simón-Fuentes M, González de la Aleja A, et al (2020) MAFB and MAF Transcription Factors as Macrophage Checkpoints for COVID-19 Severity. Front Immunol 11:. https://doi.org/10.3389/fimmu.2020.603507

Wendisch D, Dietrich O, Mari T et al (2021) SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell 184:6243-6261.e27. https://doi.org/10.1016/j.cell.2021.11.033

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Hajjaji FZ, Oumeddour A, Pommier AJC et al (2011) Liver X receptors, lipids and their reproductive secrets in the male. Biochim Biophys Acta - Mol Basis Dis 1812:974–981

Article  CAS  Google Scholar 

Schulman IG (2017) Liver X receptors link lipid metabolism and inflammation. FEBS Lett 591:2978–2991

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ag N, Guillen JA, Gallardo G et al (2013) The nuclear receptor LXRalpha controls the functional specialization of splenic macrophages. Nat Immunol 14:831–839. https://doi.org/10.1038/ni.2622

Article  CAS  Google Scholar 

Collins JL, Binz JG, Plunket KD et al (2002) Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. J Med Chem 45:1963–1966. https://doi.org/10.1021/jm0255116

Article  CAS  PubMed  Google Scholar 

Zuercher WJ, Buckholz RG, Campobasso N et al (2010) Discovery of tertiary sulfonamides as potent liver X receptor antagonists. J Med Chem 53:3412–3416. https://doi.org/10.1021/jm901797p

Article  CAS  PubMed  Google Scholar 

Schultz JR, Tu H, Luk A et al (2000) Role of LXRs in control of lipogenesis. Genes Dev 14:2831–2838. https://doi.org/10.1101/gad.850400

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kiss M, Czimmerer Z, Nagy L (2013) The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology. J Allergy Clin Immunol 132:264–286. https://doi.org/10.1016/j.jaci.2013.05.044

Article  CAS  PubMed  Google Scholar 

Joseph SB, Castrillo A, Laffitte BA et al (2003) Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 9:213–219. https://doi.org/10.1038/nm820

Article  CAS 

留言 (0)

沒有登入
gif