ALCAM Deficiency Alleviates LPS-Induced Acute Lung Injury by Inhibiting Inflammatory Response

Hayes, M., G. Curley, B. Ansari, and J.G. Laffey. 2012. Clinical review: Stem cell therapies for acute lung injury/acute respiratory distress syndrome — hope or hype? Critical care (London, England) 16 (2): 205.

Article  PubMed  Google Scholar 

Ye, R., and Z. Liu. 2020. ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway. Experimental and molecular pathology 113: 104350.

Article  CAS  PubMed  Google Scholar 

Jiang, W., F. Luo, Q. Lu, J. Liu, P. Li, X. Wang, Y. Fu, K. Hao, T. Yan, and X. Ding. 2016. The protective effect of Trillin LPS-induced acute lung injury by the regulations of inflammation and oxidative state. Chemico-biological interactions 243: 127–134.

Article  CAS  PubMed  Google Scholar 

Li, L., Y.G. Zhang, Y.F. Tan, J.J. Zhao, H.R. Zhang, and B. Zhao. 2018. Tanshinone II is a potent candidate for treatment of lipopolysaccharide-induced acute lung injury in rat model. Oncology letters 15 (2): 2550–2554.

PubMed  Google Scholar 

Xiang B, Chen L, Wang X, Zhao Y, Wang Y, and Xiang C. 2017. Transplantation of menstrual blood-derived mesenchymal stem cells promotes the repair of LPS-induced acute lung injury. International journal of molecular sciences 18 (4).

Jeong YJ, Oh HK, Park SH, and Bong JG. 2018. Prognostic significance of activated leukocyte cell adhesion molecule (ALCAM) in association with promoter methylation of the ALCAM gene in breast cancer. Molecules (Basel, Switzerland) 23 (1).

Bowen, M.A., D.D. Patel, X. Li, B. Modrell, A.R. Malacko, W.C. Wang, H. Marquardt, M. Neubauer, J.M. Pesando, U. Francke, et al. 1995. Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. The Journal of experimental medicine 181 (6): 2213–2220.

Article  CAS  PubMed  Google Scholar 

van Kempen, L.C., J.M. Nelissen, W.G. Degen, R. Torensma, U.H. Weidle, H.P. Bloemers, C.G. Figdor, and G.W. Swart. 2001. Molecular basis for the homophilic activated leukocyte cell adhesion molecule (ALCAM)-ALCAM interaction. The Journal of biological chemistry 276 (28): 25783–25790.

Article  PubMed  Google Scholar 

Ohneda, O., K. Ohneda, F. Arai, J. Lee, T. Miyamoto, Y. Fukushima, D. Dowbenko, L.A. Lasky, and T. Suda. 2001. ALCAM (CD166): Its role in hematopoietic and endothelial development. Blood 98 (7): 2134–2142.

Article  CAS  PubMed  Google Scholar 

Burandt, E., T. Bari Noubar, A. Lebeau, S. Minner, C. Burdelski, F. Jänicke, V. Müller, L. Terracciano, R. Simon, G. Sauter, W. Wilczak, and P. Lebok. 2014. Loss of ALCAM expression is linked to adverse phenotype and poor prognosis in breast cancer: A TMA-based immunohistochemical study on 2,197 breast cancer patients. Oncology reports 32 (6): 2628–2634.

Article  PubMed  Google Scholar 

Sanders, A.J., S. Owen, L.D. Morgan, F. Ruge, R.J. Collins, L. Ye, M.D. Mason, and W.G. Jiang. 2019. Importance of activated leukocyte cell adhesion molecule (ALCAM) in prostate cancer progression and metastatic dissemination. Oncotarget 10 (59): 6362–6377.

Article  PubMed  PubMed Central  Google Scholar 

Mezzanzanica, D., M. Fabbi, M. Bagnoli, S. Staurengo, M. Losa, E. Balladore, P. Alberti, L. Lusa, A. Ditto, S. Ferrini, M.A. Pierotti, M. Barbareschi, S. Pilotti, and S. Canevari. 2008. Subcellular localization of activated leukocyte cell adhesion molecule is a molecular predictor of survival in ovarian carcinoma patients. Clinical cancer research : An official journal of the American Association for Cancer Research 14 (6): 1726–1733.

Article  CAS  PubMed  Google Scholar 

Smedbakken, L., J.K. Jensen, J. Hallén, D. Atar, J.L. Januzzi, B. Halvorsen, P. Aukrust, and T. Ueland. 2011. Activated leukocyte cell adhesion molecule and prognosis in acute ischemic stroke. Stroke 42 (9): 2453–2458.

Article  PubMed  Google Scholar 

King, J., S. Ofori-Acquah, T. Stevens, and A.B. Al-Mehdi. 2004. Potential role for activated leukocyte cell adhesion molecule and neural cadherin in metastasis to the lung microcirculation. Chest 125 (5 Suppl): 150s–151s.

Article  PubMed  Google Scholar 

Allen JR, Ge L, Huang Y, Brauer R, and Chen P. 2018. TIMP-1 promotes the immune response in influenza-induced acute lung injury. Lung 196 (Suppl 3).

Li, Y., J. Huang, N.M. Foley, Y. Xu, Y.P. Li, J. Pan, H.P. Redmond, J.H. Wang, and J. Wang. 2016. B7H3 ameliorates LPS-induced acute lung injury via attenuation of neutrophil migration and infiltration. Scientific reports 6: 31284.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giunta, M., A. Favre, D. Ramarli, C. Grossi, and G. Corte. 1991. A novel integrin involved in thymocyte-thymic epithelial cell interactions. The Journal of experimental medicine 173 (6): 1537–1548.

Article  CAS  PubMed  Google Scholar 

Ikeda, K., and T. Quertermous. 2004. Molecular isolation and characterization of a soluble isoform of activated leukocyte cell adhesion molecule that modulates endothelial cell function. Journal of Biological Chemistry 279 (53): 55315.

Article  CAS  PubMed  Google Scholar 

Zimmerman, A.W., B. Joosten, R. Torensma, J.R. Parnes, F.V. Leeuwen, and C.G. Figdor. 2006. Long-term engagement of CD6 and ALCAM is essential for T-cell proliferation induced by dendritic cells. Blood 107 (8): 3212–3220.

Article  CAS  PubMed  Google Scholar 

Iolyeva M, Karaman S, Willrodt AH, Weingartner S, Vigl B, and Halin C. 2013. Novel role for ALCAM in lymphatic network formation and function. The FASEB Journal 27.

F. Santos R, Oliveira L, and M. Carmo A. 2016. Tuning T cell activation: the function of CD6 at the immunological synapse and in T cell responses. Current Drug Targets 17 (6).

Bauer, R.V., D. Oikonomou, A. Sulaj, S. Mohammed, A. Hotz-Wagenblatt, H.J. Grone, B. Arnold, C. Falk, D. Luethje, and A. Erhardt. 2013. CD166/ALCAM mediates proinflammatory effects of S100B in delayed type hypersensitivity. Journal of Immunology 191 (1): 369–377.

Article  Google Scholar 

Mi, N.K., J.Y. Hong, D.H. Shim, I.S. Sol, and M.H. Sohn. 2018. Activated leukocyte cell adhesion molecule stimulates the T cell response in allergic asthma. American journal of respiratory and critical care medicine 197 (8): 994.

Article  Google Scholar 

Fouad, A.A., W.H. Albuali, and I. Jresat. 2016. Protective effect of naringenin against lipopolysaccharide-induced acute lung injury in rats. Pharmacology 97 (5–6): 224–232.

Article  CAS  PubMed  Google Scholar 

Zhang, Z., Z. Luo, A. Bi, W. Yang, W. An, X. Dong, R. Chen, S. Yang, H. Tang, X. Han, and L. Luo. 2017. Compound edaravone alleviates lipopolysaccharide (LPS)-induced acute lung injury in mice. European journal of pharmacology 811: 1–11.

Article  CAS  PubMed  Google Scholar 

Li X, Jamal M, Guo P, Jin Z, Zheng F, Song X, Zhan J, and Wu H. 2019. Irisin alleviates pulmonary epithelial barrier dysfunction in sepsis-induced acute lung injury via activation of AMPK/SIRT1 pathways. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 118: 109363.

Du, Z.A., M.N. Sun, and Z.S. Hu. 2018. Saikosaponin A ameliorates LPS-induced acute lung injury in mice. Inflammation 41 (1): 193–198.

Article  CAS  PubMed  Google Scholar 

Reutershan, J., I. Vollmer, S. Stark, R. Wagner, K.C. Ngamsri, and H.K. Eltzschig. 2009. Adenosine and inflammation: CD39 and CD73 are critical mediators in LPS-induced PMN trafficking into the lungs. FASEB journal : Official publication of the Federation of American Societies for Experimental Biology 23 (2): 473–482.

Article  CAS  PubMed  Google Scholar 

Nie Y, Wang Z, Chai G, Xiong Y, Li B, Zhang H, Xin R, Qian X, Tang Z, Wu J, and Zhao P. 2019. Dehydrocostus lactone suppresses LPS-induced acute lung injury and macrophage activation through NF-κB signaling pathway mediated by p38 MAPK and Akt. Molecules (Basel, Switzerland) 24 (8).

Lv, H., Q. Liu, Z. Wen, H. Feng, X. Deng, and X. Ci. 2017. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox biology 12: 311–324.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, B., X. Gong, J.Y. Wan, L. Zhang, Z. Zhang, H.Z. Li, and S. Min. 2011. Resolvin D1 protects mice from LPS-induced acute lung injury. Pulmonary pharmacology & therapeutics 24 (4): 434–441.

Article  Google Scholar 

Jiang, K., T. Zhang, N. Yin, X. Ma, G. Zhao, H. Wu, C. Qiu, and G. Deng. 2017. Geraniol alleviates LPS-induced acute lung injury in mice via inhibiting inflammation and apoptosis. Oncotarget 8 (41): 71038–71053.

Article  PubMed  PubMed Central  Google Scholar 

Chi, G., M. Wei, X. Xie, L.W. Soromou, F. Liu, and S. Zhao. 2013. Suppression of MAPK and NF-κB pathways by limonene contributes to attenuation of lipopolysaccharide-induced inflammatory responses in acute lung injury. Inflammation 36 (2): 501–511.

Article  CAS  PubMed  Google Scholar 

Tasaka, S., F. Amaya, S. Hashimoto, and A. Ishizaka. 2008. Roles of oxidants and redox signaling in the pathogenesis of acute respiratory distress syndrome. Antioxidants & redox signaling 10 (4): 739–753.

Article  CAS  Google Scholar 

Huppert, L.A., M.A. Matthay, and L.B. Ware. 2019. Pathogenesis of acute respiratory distress syndrome. Seminars in respiratory and critical care medicine 40 (1): 31–39.

Article  PubMed  PubMed Central  Google Scholar 

Ryter, S.W., P.K. Hong, A. Hoetzel, J.W. Park, and A. Choi. 2007. Mechanisms of cell death in oxidative stress. Antioxidants & redox signaling 9 (1): 49–89.

Article  CAS  Google Scholar 

Jean-Luc, B. 2013. Reducing damage through Nrf-2. Cardiovascular research 1: 1–3.

Google Scholar 

Tkachev, V.O., E.B. Menshchikova, and N.K. Zenkov. 2011. Mechanism of the Nrf2/Keap1/ARE signaling system. Biochemistry Biokhimiia 76 (4): 407–422.

Article  CAS  PubMed  Google Scholar 

Zhang, H., W. Zhang, F. Jiao, X. Li, H. Zhang, L. Wang, and Z. Gong. 2018. The nephroprotective effect of MS-275 on lipopolysaccharide (LPS)-induced acute kidney injury by inhibiting reactive oxygen species (ROS)-oxidative stress and endoplasmic reticulum stress. Medical science monitor : International medical journal of experimental and clinical research 24: 2620–2630.

Article  CAS  PubMed  Google Scholar 

Petrovski, G., S. Das, B. Juhasz, A. Kertesz, A. Tosaki, and D.K. Das. 2011. Cardioprotection by endoplasmic reticulum stress-induced autophagy. Antioxidants & redox signaling 14 (11): 2191–2200.

Article  CAS  Google Scholar 

Yang H, Song Z, and Hong D. 2020. CRBN knockdown mitigates lipopolysaccharide-induced acute lung injury by suppression of oxidative stress and endoplasmic reticulum (ER) stress associated NF-κB signaling. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 123: 109761

Schappe, M.S., K. Szteyn, M.E. Stremska, S.K. Mendu, T.K. Downs, P.V. Seegren, M.A. Mahoney, S. Dixit, J.K. Krupa, E.J. Stipes, J.S. Rogers, S.E. Adamson, N. Leitinger, and B.N. Desai. 2018. Chanzyme TRPM7 mediates the Ca(2+) influx essential for lipopolysaccharide-induced toll-like receptor 4 endocytosis and macrophage activation. Immunity 48 (1): 59-74.e55.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif