Differentiation Kinetics of Hematopoietic Stem and Progenitor Cells In Vivo Are Not Affected by β-Glucan Treatment in Trained Immunity

Delves, P.J. and I.M. Roitt. 2000. The immune system. First of two parts. The New England Journal of Medicine 343(1): 37–49. https://doi.org/10.1056/NEJM200007063430107.

Medzhitov, R., and C. Janeway Jr. 2000. Innate immune recognition: Mechanisms and pathways. Immunological Reviews 173: 89–97. https://doi.org/10.1034/j.1600-065x.2000.917309.x.

Article  CAS  PubMed  Google Scholar 

Parkin, J., and B. Cohen. 2001. An overview of the immune system. The Lancet 357 (9270): 1777–1789. https://doi.org/10.1016/S0140-6736(00)04904-7.

Article  CAS  Google Scholar 

Bonilla, F.A., and H.C. Oettgen. 2010. Adaptive immunity. The Journal of Allergy and Clinical Immunology 125 (2 Suppl 2): S33-40. https://doi.org/10.1016/j.jaci.2009.09.017.

Article  PubMed  Google Scholar 

Sun, J.C., J.N. Beilke, and L.L. Lanier. 2009. Adaptive immune features of natural killer cells. Nature 457 (7229): 557–561. https://doi.org/10.1038/nature07665.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodrigues, J., et al. 2010. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science 329 (5997): 1353–1355. https://doi.org/10.1126/science.1190689.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun, J.C., J.N. Beilke, and L.L. Lanier. 2010. Immune memory redefined: Characterizing the longevity of natural killer cells. Immunological Reviews 236: 83–94. https://doi.org/10.1111/j.1600-065X.2010.00900.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ifrim, D.C., et al. 2014. Trained immunity or tolerance: Opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors. Clinical and Vaccine Immunology 21 (4): 534–545. https://doi.org/10.1128/CVI.00688-13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Netea, M.G., and R. van Crevel. 2014. BCG-induced protection: Effects on innate immune memory. Seminars in Immunology 26 (6): 512–517. https://doi.org/10.1016/j.smim.2014.09.006.

Article  CAS  PubMed  Google Scholar 

Saeed, S., et al. 2014. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345 (6204): 1251086. https://doi.org/10.1126/science.1251086.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bekkering, S., et al. 2016. In vitro experimental model of trained innate immunity in human primary monocytes. Clinical and Vaccine Immunology 23 (12): 926–933. https://doi.org/10.1128/CVI.00349-16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arts, R.J., et al. 2016. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metabolism 24 (6): 807–819. https://doi.org/10.1016/j.cmet.2016.10.008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saz-Leal, P., et al. 2018. Targeting SHIP-1 in myeloid cells enhances trained immunity and boosts response to infection. Cell Reports 25 (5): 1118–1126. https://doi.org/10.1016/j.celrep.2018.09.092.

Article  CAS  PubMed  Google Scholar 

Netea, M.G., J. Quintin, and J.W. van der Meer. 2011. Trained immunity: A memory for innate host defense. Cell Host & Microbe 9 (5): 355–361. https://doi.org/10.1016/j.chom.2011.04.006.

Article  CAS  Google Scholar 

Netea, M.G., et al. 2016. Trained immunity: a program of innate immune memory in health and disease. Science 352(6284): aaf1098. https://doi.org/10.1126/science.aaf1098.

Netea, M.G., et al. 2020. Defining trained immunity and its role in health and disease. Nature Reviews Immunology 20 (6): 375–388. https://doi.org/10.1038/s41577-020-0285-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Divangahi, M., et al. 2021. Trained immunity, tolerance, priming and differentiation: Distinct immunological processes. Nature Immunology 22 (1): 2–6. https://doi.org/10.1038/s41590-020-00845-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lowry, L.E., and W.A. Zehring. 2017. Potentiation of natural killer cells for cancer immunotherapy: A review of literature. Frontiers in Immunology 8: 1061. https://doi.org/10.3389/fimmu.2017.01061.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patel, A.A., et al. 2017. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. Journal of Experimental Medicine 214 (7): 1913–1923. https://doi.org/10.1084/jem.20170355.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilson, A., et al. 2008. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135 (6): 1118–1129. https://doi.org/10.1016/j.cell.2008.10.048.

Article  CAS  PubMed  Google Scholar 

Trumpp, A., M. Essers, and A. Wilson. 2010. Awakening dormant haematopoietic stem cells. Nature Reviews Immunology 10 (3): 201–209. https://doi.org/10.1038/nri2726.

Article  CAS  PubMed  Google Scholar 

Manz, M.G., and S. Boettcher. 2014. Emergency granulopoiesis. Nature Reviews Immunology 14 (5): 302–314. https://doi.org/10.1038/nri3660.

Article  CAS  PubMed  Google Scholar 

Kaufmann, E., et al. 2018. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172(1–2): 176–190 e19. https://doi.org/10.1016/j.cell.2017.12.031.

Mitroulis, I., et al. 2018. Modulation of Myelopoiesis progenitors is an integral component of trained immunity. Cell 172(1–2): 147–161 e12. https://doi.org/10.1016/j.cell.2017.11.034.

de Laval, B., et al. 2020. C/EBPbeta-dependent epigenetic memory induces trained immunity in hematopoietic stem cells. Cell Stem Cell 26 (5): 793. https://doi.org/10.1016/j.stem.2020.03.014.

Article  CAS  PubMed  Google Scholar 

Arts, R.J.W., et al. 2018. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe 23(1): 89–100 e5. https://doi.org/10.1016/j.chom.2017.12.010.

Christ, A., et al. 2018. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172(1–2): 162–175 e14. https://doi.org/10.1016/j.cell.2017.12.013.

Zhang, Y., et al. 2018. Hematopoietic hierarchy - an updated roadmap. Trends in Cell Biology 28 (12): 976–986. https://doi.org/10.1016/j.tcb.2018.06.001.

Article  PubMed  Google Scholar 

Patel, S.H., et al. 2022. Lifelong multilineage contribution by embryonic-born blood progenitors. Nature 606 (7915): 747–753. https://doi.org/10.1038/s41586-022-04804-z.

Article  CAS  PubMed  Google Scholar 

Zheng, X., et al. 2019. Embryonic lineage tracing with Procr-CreER marks balanced hematopoietic stem cell fate during entire mouse lifespan. Journal of Genetics and Genomics 46 (10): 489–498. https://doi.org/10.1016/j.jgg.2019.10.005.

Article  PubMed  Google Scholar 

Garcia-Valtanen, P., et al. 2017. Evaluation of trained immunity by beta-1, 3 (d)-glucan on murine monocytes in vitro and duration of response in vivo. Immunology and Cell Biology 95 (7): 601–610. https://doi.org/10.1038/icb.2017.13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wright, D.E., et al. 2001. Cyclophosphamide/granulocyte colony-stimulating factor causes selective mobilization of bone marrow hematopoietic stem cells into the blood after M phase of the cell cycle. Blood 97 (8): 2278–2285. https://doi.org/10.1182/blood.v97.8.2278.

Article  CAS  PubMed  Google Scholar 

Adolfsson, J., et al. 2005. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121 (2): 295–306. https://doi.org/10.1016/j.cell.2005.02.013.

Article  CAS  PubMed  Google Scholar 

Sun, J., et al. 2014. Clonal dynamics of native haematopoiesis. Nature 514 (7522): 322–327. https://doi.org/10.1038/nature13824.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanayama, M., et al. 2020. CD86-based analysis enables observation of bona fide hematopoietic responses. Blood 136 (10): 1144–1154. https://doi.org/10.1182/blood.2020004923.

Article  PubMed  Google Scholar 

Wang, D., et al. 2015. Identification of multipotent mammary stem cells by protein C receptor expression. Nature 517 (7532): 81–84. https://doi.org/10.1038/nature13851.

Article  CAS  PubMed  Google Scholar 

Balazs, A.B., et al. 2006. Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood 107 (6): 2317–2321. https://doi.org/10.1182/blood-2005-06-2249.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gekas, C., and T. Graf. 2013. CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood 121 (22): 4463–4472. https://doi.org/10.1182/blood-2012-09-457929.

Article  CAS  PubMed  Google Scholar 

Haas, S., et al. 2015. Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 17 (4): 422–434. https://doi.org/10.1016/j.stem.2015.07.007.

Article  CAS  PubMed  Google Scholar 

Miyawaki, K., et al. 2015. CD41 marks the initial myelo-erythroid lineage specification in adult mouse hematopoiesis: Redefinition of murine common myeloid progenitor. Stem Cells 33 (3): 976–987. https://doi.org/10.1002/stem.1906.

Article 

留言 (0)

沒有登入
gif