l-amino acids affect the hydrogenase activity and growth of Ralstonia eutropha H16

Andresen LC, Dungait JA, Bol R, Selsted MB, Ambus P, Michelsen A (2014) bacteria and fungi respond differently to multifactorial climate change in a temperate heathland, traced with 13C-glycine and FACE CO2. PLoS ONE 9(1):85070. https://doi.org/10.1371/journal.pone.0085070

Article  CAS  Google Scholar 

Bagramyan K, Galstyan A, Trchounian A (2000) Redox potential is a determinant in the Escherichia coli anaerobic fermentative growth and survival: effects of impermeable oxidant. Bioelectrochem 51:151–156

Article  CAS  Google Scholar 

Burkovski A, Krämer R (2002) Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications. Appl Microbiol Biotechnol 58:265–274

Article  CAS  PubMed  Google Scholar 

Chantranupong L, Wolfson RL, Sabatini DM (2015) Nutrient-sensing mechanisms across evolution. Cell 161:67–83. https://doi.org/10.1016/j.cell.2015.02.041

Article  CAS  PubMed  PubMed Central  Google Scholar 

Christgen SL (2017) Exploration of redox-based functional switching and intermediate substrate channeling in proline catabolism. ETD collection for UNL. AAI10616683

Christgen SL, Becker DF (2019) Role of proline in pathogen and host interactions. ARS 30(4):683–709. https://doi.org/10.1089/ars.2017.7335

Article  CAS  Google Scholar 

Claassens NJ, Bordanaba-Florit G, Cotton CAR, De Maria A, Finger-Bou M, Friedeheim L, Giner-Laguarda N, Munar-Palmer M, Newell W, Scarinci G, Verbunt J, de Vries ST, Yilmaz S, Bar-Even A (2020) Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator. Metab Eng 62:30–41. https://doi.org/10.1016/j.ymben.2020.08.004

Article  CAS  PubMed  Google Scholar 

Cramm R (2009) Genomic view of energy metabolism in Ralstonia eutropha H16. J Mol Microbiol Biotechnol 16:38–52

CAS  PubMed  Google Scholar 

Gabrielyan L, Trchounian A (2012) Concentration dependent glycine effect on the photosynthetic growth and bio-hydrogen production by Rhodobacter sphaeroides from mineral springs. Biomass Bioenerg 36:333–338

Article  CAS  Google Scholar 

Gabrielyan L, Torgomyan H, Trchounian A (2010) Growth characteristics and hydrogen production by Rhodobacter sphaeroides using various amino acids as nitrogen sources and their combinations with carbon sources. Int J Hydrogen Energy 35(22):12201–12207

Article  CAS  Google Scholar 

Goris T, Wait FA, Saggu M, Fritsch J, Heidary N, Stein M, Zebger I, Lendzian F, Armstrong FA, Friedrich B, Lenz O (2011) A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase. Nat Chem Biol 7:310–318

Article  CAS  PubMed  Google Scholar 

Grunwald S, Mottet A, Grousseau E, Plassmeier JK, Popovic MK, Guillouet SE, Sinskey AJ (2014) Kinetic and stoichiometric characterization of organoautotrophic growth of Ralstonia eutropha on formic acid in fed-batch and continuous cultures. Microb Biotechnol 8:155–163

Article  PubMed  PubMed Central  Google Scholar 

Hakobyan L, Gabrielyan L, Trchounian A (2012) Yeast extract as an effective nitrogen source stimulating cell growth and enhancing hydrogen photoproduction by Rhodobacter sphaeroides strains from mineral springs. Int J Hydrog Energy 37(8):6519–6526. https://doi.org/10.1016/j.ijhydene.2012.01.07

Article  CAS  Google Scholar 

Han L, Doverskog M, Enfors SO, Häggström L (2002) Effect of glycine on the cell yield and growth rate of Escherichia coli: evidence for cell-density-dependent glycine degradation as determined by (13)C NMR spectroscopy. J Biotechnol. 92(3):237–49. https://doi.org/10.1016/s0168-1656(01)00373-x

Article  CAS  PubMed  Google Scholar 

Jugder BE, Chen Z, Ping DT, Lebhar H, Welch J, Marquis CP (2015) An analysis of the changes in soluble hydrogenase and global gene expression in Cupriavidus necator (Ralstonia eutropha) H16 grown in heterotrophic diauxic batch culture. Microb Cell Fact 14:42

Article  PubMed  PubMed Central  Google Scholar 

Jugder BE, Lebhar H, Aguey-Zinsou KF, Marquis CP (2016) Production and purification of a soluble hydrogenase from Ralstonia eutropha H16 for potential hydrogen fuel cell applications. MethodsX 3:242–250

Article  PubMed  PubMed Central  Google Scholar 

Kajikawa H, Mitsumori M, Ohmomo S (2002) Stimulatory and inhibitory effects of protein amino acids on growth rate and efficiency of mixed ruminal bacteria. J. Dairy Sci 85(8):2015–2022. https://doi.org/10.3168/jds.S0022-0302(02)74278-1

Article  CAS  PubMed  Google Scholar 

Karapetyan L, Pinske C, Sawers G, Trchounian A, Trchounian K (2020) Influence of C4-dcu transporters on hydrogenase and formate dehydrogenase activities in stationary phase-grown fermenting Escherichia coli. IUBMB Life 72:680–1685

Article  Google Scholar 

Kleinhaus JT, Wittkamp F, Yadav Sh, Siegmund D, Apfel U-P (2021) [FeFe]-Hydrogenases: maturation and reactivity of enzymatic systems and overview of biomimetic models. Chem Soc Rev 50:1668–1784. https://doi.org/10.1039/D0CS01089H

Article  CAS  PubMed  Google Scholar 

Lenz O, Bernhard M, Buhrke T, Schwartz E, Friedrich B (2002) The hydrogen-sensing apparatus in Ralstonia eutropha. J Mol Microbiol Biotechnol 4(3):255–262

CAS  PubMed  Google Scholar 

Lenz O, Lauterbach L, Frielingsdorf S, Friedrich B (2015) Oxigen-tolerant hydrogenases and their biotechnological potential. In: Matthias R (ed) Biohydrogen. De Gruyter, Berlin, pp 61–96

Chapter  Google Scholar 

Lenz O, Lauterbach L, Frielingsdorf S (2018) O2-tolerant [NiFe]-hydrogenases of Ralstonia eutropha H16: Physiology, molecular biology, purification, and biochemical analysis. Meth Enzymol 63:117–151

Article  Google Scholar 

Li M, Liao X, Zhang D, Du G, Chen J (2011) Yeast extract promotes cell growth and induces production of polyvinyl alcohol-degrading enzymes. Enzyme Res. https://doi.org/10.4061/2011/179819

Article  PubMed  PubMed Central  Google Scholar 

Liu YK, Kuo HC, Lai CH, Chou CCh (2020) Single amino acid utilization for bacterial categorization. Sci Rep 10:12686. https://doi.org/10.1038/s41598-020-69686-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lukey MJ, Parkin A, Roessler MM, Murphy BJ, Harmer J, Palmer T, Sargent F, Armstrong FA (2010) How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. J Biol Chem 285(6):3928–3938. https://doi.org/10.1074/jbc.M109.067751

Article  CAS  PubMed  Google Scholar 

Minami M, Ando T, Hashikawa SN, Torii K, Hasegawa T, Israel DA, Ina K, Kusugami K, Goto H, Ohta M (2004) Effect of glycine on Helicobacter pylori in vitro. Antimicrob Agents Chemother 48(10):3782–3788. https://doi.org/10.1128/AAC.48.10.3782-3788.2004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moe LA (2013) Amino acids in the rhizosphere: from plants to microbes. Am J Bot 100(9):1692–1705. https://doi.org/10.3732/ajb.1300033

Article  CAS  PubMed  Google Scholar 

Ochi K (2017) Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. J Antibiot 70:25–40. https://doi.org/10.1038/ja.2016.82

Article  CAS  Google Scholar 

Ortega Á, Zhulin IB, Krell T (2017) Sensory repertoire of bacterial chemoreceptors. Microbiol Mol Biol Rev 81(4):e00033-e117. https://doi.org/10.1128/MMBR.00033-17

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parkinson JS, Hazelbauer GL, Falke JJ (2015) Signaling and sensory adaptation in Escherichia coli chemoreceptors. Trends Microbiol 23(5):257–266. https://doi.org/10.1016/j.tim.2015.03.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering Ch, Pötter M, Schwartz E, Strittmatter A, Voß I, Gottschalk G, Steinbüchel A, Friedrich B, Bowien B (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262

Article  PubMed  Google Scholar 

Poladyan A, Trchounian K, Sawers RG, Trchounian A (2013) Hydrogen-oxidizing hydrogenases 1 and 2 of Escherichia coli regulate the onset of hydrogen evolution and ATPase activity, respectively, during glucose fermentation at alkaline pH. FEMS Microbiol Lett 348(2):143–148. https://doi.org/10.1111/1574-6968.12281

Article  CAS  PubMed  Google Scholar 

Poladyan A, Trchounian K, Vasilian A, Trchounian A (2018) Hydrogen production by Escherichia coli using brewery waste: optimal pretreatment of waste and role of different hydrogenases. Renew Energy 115:931–936

Article  CAS  Google Scholar 

Poladyan A, Blbulyan S, Sahakyan M, Lenz O (2019) Trchounian A. Growth of the facultative chemolithoautotroph Ralstonia eutropha on organic waste materials: growth characteristics, redox regulation and hydrogenase activity. Microb Cell Fact 18:201. https://doi.org/10.1186/s12934-019-1251-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poulpiquet A, Ranava D, Monsalve K, Giudici-rticoni MT, Lojou E (2014) Biohydrogen for a new generation of H2/O2 biofuel cells: a sustainable energy perspective. Chem Electro Chem 20141:1724–1750

Google Scholar 

Raberg M, Volodina E, Lin K, Steinbüchel A (2018) Ralstonia eutropha H16 in progress: applications beside PHAs and establishment as production platform by advanced genetic tools. Crit Rev Biotechnol 38(4):494–510. https://doi.org/10.1080/07388551.2017.1369933

Article  CAS  PubMed  Google Scholar 

Reeve HA, Nicholson J, Altaf F, Lonsdale TH, Preissler J, Lauterbach L, Lenz O, Leimkühler S, Hollmann F, Paul CE, Vincent KA (2022) A hydrogen-driven biocatalytic approach to recycling synthetic analogues of NAD(P)H+. Chem Commun 58:10540–10543. https://doi.org/10.1039/D2CC02411J

Article  CAS  Google Scholar 

Ripple WJ, Wolf C, Newsome TM, Barnard P, Mooma

留言 (0)

沒有登入
gif