Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity

Li, N. & Clevers, H. Coexistence of quiescent and active adult stem cells in mammals. Science 327, 542–545 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheung, T. H. & Rando, T. A. Molecular regulation of stem cell quiescence. Nat. Rev. Mol. Cell Biol. 14, 329–340 (2013).

Article  CAS  PubMed  Google Scholar 

Orford, K. W. & Scadden, D. T. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat. Rev. Genet. 9, 115–128 (2008).

Article  CAS  PubMed  Google Scholar 

Ramalho-Santos, M. & Willenbring, H. On the origin of the term ‘stem cell’. Cell Stem Cell 1, 35–38 (2007).

Article  CAS  PubMed  Google Scholar 

Barker, N., Bartfeld, S. & Clevers, H. Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell 7, 656–670 (2010).

Article  CAS  PubMed  Google Scholar 

Cho, I. J. et al. Mechanisms, hallmarks, and implications of stem cell quiescence. Stem Cell Rep. 12, 1190–1200 (2019).

Article  CAS  Google Scholar 

Clevers, H. & Watt, F. M. Defining adult stem cells by function, not by phenotype. Annu. Rev. Biochem. 87, 1015–1027 (2018).

Article  CAS  PubMed  Google Scholar 

Cable, J. et al. Adult stem cells and regenerative medicine — a symposium report. Ann. N. Y. Acad. Sci. 1462, 27–36 (2020).

Article  PubMed  Google Scholar 

An, Z. et al. A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nat. Commun. 9, 378 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Lewis, E. E. L. et al. A quiescent, regeneration-responsive tissue engineered mesenchymal stem cell bone marrow niche model via magnetic levitation. ACS Nano 10, 8346–8354 (2016).

Article  CAS  PubMed  Google Scholar 

Barriga, F. M. et al. Mex3a marks a slowly dividing subpopulation of Lgr5+ intestinal stem cells. Cell Stem Cell 20, 801–816.e7 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai, S. et al. A quiescent Bcl11b high stem cell population is required for maintenance of the mammary gland. Cell Stem Cell 20, 247–260.e5 (2017).

Article  CAS  PubMed  Google Scholar 

Fu, N. Y. et al. Identification of quiescent and spatially restricted mammary stem cells that are hormone responsive. Nat. Cell Biol. 19, 164–176 (2017).

Article  CAS  PubMed  Google Scholar 

Quarta, M. et al. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat. Biotechnol. 34, 752–759 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Montarras, D. et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science 309, 2064–2067 (2005).

Article  CAS  PubMed  Google Scholar 

Marqués-Torrejón, M. Á. et al. LRIG1 is a gatekeeper to exit from quiescence in adult neural stem cells. Nat. Commun. 12, 259 (2021).

Article  Google Scholar 

Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S. & Blau, H. M. Self-renewal and expansion of single transplanted muscle stem cells. Nature 456, 502–506 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kobayashi, H. et al. Environmental optimization enables maintenance of quiescent hematopoietic stem cells ex vivo. Cell Rep. 28, 145–158.e9 (2019).

Article  CAS  PubMed  Google Scholar 

Mourikis, P. et al. A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 30, 243–252 (2012).

Article  CAS  PubMed  Google Scholar 

Bjornson, C. R. R. et al. Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells 30, 232–242 (2012).

Article  CAS  PubMed  Google Scholar 

Engler, A. et al. Notch2 signaling maintains NSC quiescence in the murine ventricular-subventricular zone. Cell Rep. 22, 992–1002 (2018).

Article  CAS  PubMed  Google Scholar 

Wang, W. et al. Notch2 blockade enhances hematopoietic stem cell mobilization and homing. Haematologica 102, 1785–1795 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fujimaki, S. et al. Notch1 and Notch2 coordinately regulate stem cell function in the quiescent and activated states of muscle satellite cells. Stem Cells 36, 278–285 (2018).

Article  CAS  PubMed  Google Scholar 

Sousa-Victor, P., García-Prat, L. & Muñoz-Cánoves, P. Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat. Rev. Mol. Cell Biol. 23, 204–226 (2022).

Article  CAS  PubMed  Google Scholar 

De Micheli, A. J. et al. Single-cell analysis of the muscle stem cell hierarchy identifies heterotypic communication signals involved in skeletal muscle regeneration. Cell Rep. 30, 3583–3595.e5 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Llorens-Bobadilla, E. et al. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17, 329–340 (2015).

Article  CAS  PubMed  Google Scholar 

Rodriguez-Fraticelli, A. E. et al. Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature 583, 585–589 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Velten, L. et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19, 271–281 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cabezas-Wallscheid, N. et al. Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell 169, 807–823.e19 (2017).

Article  CAS  PubMed  Google Scholar 

Machado, L. et al. Tissue damage induces a conserved stress response that initiates quiescent muscle stem cell activation. Cell Stem Cell 28, 1125–1135.e7 (2021).

Article  CAS  PubMed  Google Scholar 

Joost, S. et al. Single-cell transcriptomics reveals that differentiation and spatial signatures shape epidermal and hair follicle heterogeneity. Cell Syst. 3, 221–237.e9 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zywitza, V., Misios, A., Bunatyan, L., Willnow, T. E. & Rajewsky, N. Single-cell transcriptomics characterizes cell types in the subventricular zone and uncovers molecular defects impairing adult neurogenesis. Cell Rep. 25, 2457–2469.e8 (2018).

Article  CAS  PubMed  Google Scholar 

Chua, B. A., Van Der Werf, I., Jamieson, C. & Signer, R. A. J. Post-transcriptional regulation of homeostatic, stressed, and malignant stem cells. Cell Stem Cell 26, 138–159 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Morrée, A. et al. Staufen1 inhibits MyoD translation to actively maintain muscle stem cell quiescence. Proc. Natl Acad. Sci. USA 114, E8996–E9005 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Urbán, N. et al. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science 353, 292–295 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Ma, X. et al. Msi2 maintains quiescent state of hair follicle stem cells by directly repressing the Hh signaling pathway. J. Invest. Dermatol. 137, 1015–1024 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cabezas-Wallscheid, N. et al. Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell 15, 507–522 (2014).

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif