Fluorothiazinon inhibits the virulence factors of uropathogenic Escherichia coli involved in the development of urinary tract infection

Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13:269–84. https://doi.org/10.1038/nrmicro3432.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sabih A, Leslie SW. StatPearls. In: Complicated urinary tract infections. Treasure Island (FL): StatPearls Publishing; 2022.

Zagaglia C, Ammendolia MG, Maurizi L, Nicoletti M, Longhi C. Urinary tract infections caused by uropathogenic Escherichia coli strains—new strategies for an old pathogen. Microorganisms. 2022;10:1425 https://doi.org/10.3390/microorganisms10071425.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parvez SA, Rahman D. Virulence factors of uropathogenic E. coli. In: Microbiology of urinary tract Infections-microbial agents and predisposing factors. IntechOpen; 2018. p. 7–21. https://doi.org/10.5772/intechopen.79557.

Samet M, Ghaemi E, Nejad MH, Jamali A. Prevalence of different virulence factors and biofilm production ability of urinary Escherichia coli isolates. Int J Biol Med Res. 2014;5:4546–9.

Google Scholar 

Valiatti TB, et al. Genetic and virulence characteristics of a hybrid atypical enteropathogenic and uropathogenic Escherichia coli (aEPEC/UPEC) Strain. Front Cell Infect Microbiol. 2020;10:492 https://doi.org/10.3389/fcimb.2020.00492.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rezatofighi SE, Mirzarazi M, Salehi M. Virulence genes and phylogenetic groups of uropathogenic Escherichia coli isolates from patients with urinary tract infection and uninfected control subjects: a case-control study. BMC Infect Dis. 2021;21:361.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bien J, Sokolova O, Bozko P. Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. Int J Nephrol. 2012;2012:681473 https://doi.org/10.1155/2012/681473.

Article  PubMed  PubMed Central  Google Scholar 

Elkahwaji JE, Ott CJ, Janda LM, Hopkins WJ. Mouse model for acute bacterial prostatitis in genetically distinct inbred strains. Urology. 2005;66:883–7. https://doi.org/10.1016/j.urology.2005.04.013.

Article  PubMed  Google Scholar 

Terlizzi ME, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli (UPEC) infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front Microbiol. 2017;8:1566 https://doi.org/10.3389/fmicb.2017.01566.

Article  PubMed  PubMed Central  Google Scholar 

Trautner BW, Darouiche RO. Role of biofilm in catheter-associated urinary tract infection. Am J Infect Control. 2004;32:177–83. https://doi.org/10.1016/j.ajic.2003.08.005.

Article  PubMed  PubMed Central  Google Scholar 

Bartoletti R, Cai T, Wagenlehner FM, Naber K, Bjerklund Johansen TE. Treatment of urinary tract infections and antibiotic stewardship. Eur Urol Suppl. 2016;15:81–87. https://doi.org/10.1016/j.eursup.2016.04.003.

Article  Google Scholar 

Sanchez GV, Babiker A, Master RN, Luu T, Mathur A, Bordon J. Antibiotic resistance among urinary isolates from female outpatients in the United States in 2003 and 2012. Antimicrob Agents Chemother. 2016;60:2680–3. https://doi.org/10.1128/AAC.02897-15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Munguia J, Nizet V. Pharmacological targeting of the host-pathogen interaction: alternatives to classical antibiotics to combat drug-resistant superbugs. Trends Pharmacol Sci. 2017;38:473–88. https://doi.org/10.1016/j.tips.2017.02.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martínez OF, Cardoso MH, Ribeiro SM, Franco OL. Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Front Cell Infect Microbiol. 2019;9:74 https://doi.org/10.3389/fcimb.2019.00074.

Article  CAS  Google Scholar 

Muller S, Feldman MF, Cornelis GR. The Type III secretion system of Gram-negative bacteria: a potential therapeutic target? Expert Opin Ther Targets. 2001;5:327–39. https://doi.org/10.1517/14728222.5.3.327.

Article  CAS  PubMed  Google Scholar 

Diepold A, Armitage JP. Type III secretion systems: the bacterial flagellum and the injectisome. Philos Trans R Soc Lond B Biol Sci. 2015;370:20150020 https://doi.org/10.1098/rstb.2015.0020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koroleva EA, Kobets NV, Zayakin ES, Luyksaar SI, Shabalina LA, Zigangirova NA. Small molecule inhibitor of type three secretion suppresses acute and chronic Chlamydia trachomatis infection in a novel urogenital Chlamydia model. Biomed Res Int. 2015;2015:484853 https://doi.org/10.1155/2015/484853.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sheremet AB, Zigangirova NA, Zayakin ES, Luyksaar SI, Kapotina LN, Nesterenko LN, et al. Small molecule inhibitor of type three secretion system belonging to a class 2,4-disubstituted-4H-[1,3,4]-thiadiazine-5-ones improves survival and decreases bacterial loads in an airway Pseudomonas aeruginosa infection in mice. Biomed Res Int. 2018;2018:5810767 https://doi.org/10.1155/2018/5810767.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zigangirova NA, Nesterenko LN, Sheremet AB, Soloveva AV, Luyksaar SI, Zayakin ES, et al. Fluorothiazinon, a small-molecular inhibitor of T3SS, suppresses salmonella oral infection in mice. J Antibiot. 2021;74:244–54. https://doi.org/10.1038/s41429-020-00396-w.

Article  CAS  Google Scholar 

Zhou M, Guo Z, Duan Q, Hardwidge PR, Zhu G. Escherichia coli type III secretion system 2: a new kind of T3SS? Vet Res. 2014;45:32 https://doi.org/10.1186/1297-9716-45-32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miyazaki J, Ba-Thein W, Kumao T, Akaza H, Hayashi H. Identification of a type III secretion system in uropathogenic Escherichia coli. FEMS Microbiol Lett. 2002;212:221–8. https://doi.org/10.1111/j.1574-6968.2002.tb11270.x.

Article  CAS  PubMed  Google Scholar 

Lüthje P, Brauner A. Virulence factors of uropathogenic E. coli and their interaction with the host. Adv Micro Physiol. 2014;65:337–72. https://doi.org/10.1016/bs.ampbs.2014.08.006.

Article  CAS  Google Scholar 

Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 2000;19:2803–12. https://doi.org/10.1093/emboj/19.12.2803.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conte MP, Aleandri M, Marazzato M, Conte AL, Ambrosi C, Nicoletti M, et al. The adherent/invasive Escherichia coli (AIEC) strain LF82 invades and persists in human prostate cell lineRWPE-1 activating a strong inflammatory response. Infect Immun. 2016;84:3105–13. https://doi.org/10.1128/IAI.00438-16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ho C-H, Fan C-K, Yu H-J, Wu C-C, Chen K-C, Liu S-P, et al. Testosterone suppresses uropathogenic Escherichia coli invasion and colonization within prostate cells and inhibits inflammatory responses through JAK/STAT-1 signaling pathway. PLoS ONE. 2017;12:e0180244 https://doi.org/10.1371/journal.pone.0180244.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zigangirova NA, Zayakin ES, Kapotina LN, Kost EA, DidenkoLV, Davydova DY, et al. Development of chlamydial type III secretion system inhibitors for suppression of acute and chronic forms of chlamydial infection. Acta Nat. 2012;4:87–97. https://doi.org/10.1099/jmm.0.000189.

Article  CAS  Google Scholar 

Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;36:493–6.

Article  Google Scholar 

Das SC, Ramamurthy T, Ghosh S, Pazhani GP, Sen T, Singh R. Molecular characterization of locus of enterocyte effacement pathogenicity island in shigatoxic Escherichia coli isolated from human and cattle in West Bengal, India. Indian J Med Res. 2017;146:S30–S37. https://doi.org/10.4103/ijmr.IJMR_1877_15.

Article  PubMed  PubMed Central  Google Scholar 

Knutton S, Baldwin T, Williams PH, McNeish AS. Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun. 1989;57:1290–8. https://doi.org/10.1128/iai.57.4.1290-1298.1989.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang S, Liu X, Xu X, Yang D, Wang D, Han X, et al. Escherichia coli type III secretion system 2 ATPase EivC is involved in the motility and virulence of avian pathogenic Escherichia coli. Front Microbiol. 2016;7:1387 https://doi.org/10.3389/fmicb.2016.01387.

Article  PubMed  PubMed Central  Google Scholar 

Aggarwal N, Lotfollahzadeh S. Recurrent urinary tract infections. Treasure Island (FL): StatPearls Publishing; 2022 Jan.

Glover M, Moreira CG, Sperandio V, Zimmern P. Recurrent urinary tract infections in healthy and nonpregnant women. Urol Sci. 2014; 1–8. https://doi.org/10.1016/j.urols.2013.11.007.

Sharma K, Dhar N, Thacker VV, Signorino-Gelo F, Knott GW, McKinney JD. Dynamic persistence of UPEC intracellular bacterial communities in a human bladder-chip model of urinary tract infection. eLife 2021;10:e66481 https://doi.org/10.7554/eLife.66481.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Larzábal M, Da Silva WM, Riviere NA, Cataldi AA. Novel effector protein EspY3 of Type III secretion system from enterohemorrhagic Escherichia coli is localized in actin pedestals. Microorganisms. 2018;6:112 https://doi.org/10.3390/microorganisms6040112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vega-Hernández R, Ochoa SA, Valle-Rios R, et al. Flagella, Type I fimbriae and curli of uropathogenic Escherichia coli promote the release of proinflammatory cytokines in a coculture system. Microorganisms. 2021;9:2233 https://doi.org/10.3390/microorganisms9112233.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haiko J, Westerlund-Wikström B. The role of the bacterial flagellum in adhesion and virulence. Biology. 2013;2:1242–67.

留言 (0)

沒有登入
gif