Efficacy of intraosseous access for trauma resuscitation: a systematic review and meta-analysis

In this systematic review and meta-analysis, we found that the success rate on first attempt of IO access in trauma patients was significantly higher than that of IV access. In addition, the mean procedure time was significantly reduced. Therefore, IO access can help physicians gain efficient vascular access and inject a sufficient amount of liquid into blood vessels in a brief time. During emergency and pre-hospital emergency treatments, most severe trauma patients are in a state of shock, causing vasoconstriction and closed micro-circulation, which makes it difficult for physicians to obtain vascular access and deliver life-saving medications and fluids through peripheral veins. The bone marrow cavity of patients in the shock stage does not collapse [21] and infused fluid can enter the capillaries through the blood sinuses in the bone marrow cavity. Furthermore, it can withstand high pressure and maintain a good perfusion state. Therefore, even if capillaries are frequently closed to the passage of blood, they do not affect the efficiency of IO access. Some studies have shown that the earlier the administration, the better the resuscitation effect. With this consideration in mind, the role of IO vascular access in pre-hospital and emergency environments should be emphasized.

Many factors affect the success of IO puncture, such as puncture sites, IO device, and proficiency level of the operator. The common puncture sites of the IO are the sternum, proximal humerus, and proximal tibia [22]. It has been found that sternal puncture site is easily accessible and is in close proximity to the central venous circulation. Therefore, sternal infusions reach the central circulation faster than infusions in other insertion sites [23]. The humeral site can reach a speed equivalent to that of the sternal puncture site. At the same time, less pain was observed in some studies [24] compared to other sites. However, it may lead to dislodgement and difficulty in identifying anatomical landmarks [25, 26]. In addition, the most popular site for IO access remains the proximal tibia since its first description in 1940 [27]. Improper puncture operation and site may lead to resuscitation failure and even corresponding complications. Many studies have focused on randomized simulation studies of physicians [28]. It was concluded that the success rate may differ considerably between practitioners [29, 30].

The higher success rate on first attempt of IO access and the shorter procedure time can result in faster vascular access and shorten the time of first aid. Maintaining a high flow rate can ensure the effect of resuscitation and administration of medications or fluids. Righi et al. [31] reviewed the flow rate of IO access and revealed that the flow rate through an intraosseous catheter varies widely, depending upon the device used, anatomic insertion site selected, type of medication or fluid being infused, and other features of the infusion kit. Some studies have shown that flow rates with direct venous catheterization are generally higher than that achievable via the IO route, which may be one reason for the preferential use of direct venous access in resuscitative situations [32, 33]. But we also found that the maximum infusion speed of IO is similar to that of IV [22]. Consequently, we hold that the effect of IO is equivalent to that of IV.

Safety is always an important aspect. In this systematic review and meta-analysis, we found that there was no statistical difference in complications between the IO and IV group. The most common types of complications from IO include bone injury, extravasation, osteomyelitis, and compartment syndrome. Besides the inability to insert the needle or a subsequent displacement, the complication rate of IO access has been reported to be lower than 1% [34, 35], which is much lower than that of IV access in adults. With updated equipment, the IO needle has developed into a mechanical device with a higher success rate of puncture, stronger support, and no longer fall off easily, increasing its reliability.

Mechanical IO equipment did not appear until the end of the twentieth century. With the development of technology, newer equipment has been developed or modified from IO needle into various manual devices. There are currently three mechanical IO devices approved by the United States Food and Drug Administration (FDA): the FAST-1 (Pyng Medical Corporation, Vancouver, British Columbia, Canada), the BIG (WaisMed, Yokneam, Israel), and the EZ-IO (Vidacare Corporation Shavano Park, Texas, USA). The BIG and FAST-1 are both spring-loaded, disposable, single-use devices, while the EZ-IO includes a reusable power driver with single-use needle sets. A short cut review carried out in 2011 suggested that traditional manual intraosseous infusion devices have better success rates and faster insertion times compared with semi-automatic intraosseous infusion devices in the prehospital setting [36]. Some studies showed that the EZ-IO demonstrated higher success rates than the BIG, and the BIG could be placed significantly faster than the FAST1 [37, 38]; but others conducted that the differences between both IO devices were not statistically significant [39]. By all accounts these equipment can be placed fast with a high first-attempt success rate [22].

In addition to the convenience and practicality of application, IO access incurs lower financial costs. A study from six centers in U.S. revealed more successful IO catheter placement and few complications. It was estimated that placing IO catheters instead of CVCs in 20% of those cases could represent a savings of $512 million in U.S. related to the cost of treating complications [40].

None of the articles we included provided survival data. Many factors can affect the survival outcomes of patients. Yu-Lin et al. [41] revealed that time to intervention was identified to be an important outcome moderator. To compare the effects of IO and IV access alone, we must exclude other confounding factors. Two previous meta-analyses [41, 42] indicated that IO access was associated with worse survival outcomes for OHCA patients compared with IV access. A likely reason may be that patients who received IO access were more seriously ill. These studies [43,44,45,46,47] of OHCA patients showed that there are significant differences in pre-access characteristics between the IO and IV groups, such as age, sex, witnessed status, and initial shockable rhythm. Some differences did not diminish even after propensity score matching (PSM) [45]. In case of trauma, Smith et al. reported that patients in the IO group were more severely injured with worse outcomes [48]. Another study by Helm et al. reported similar patient characteristics and results [49]. In most cases, IO access is an alternative when an attempt at IV access fails. In addition, the maximum speed of IO access is designed to be much higher than that of IV access; however, some retrospective studies reported a lower speed of infusion via the IO route. This is also a reason for worse outcomes. Most drugs given by IO have been shown to have equal availability and physiologic effect as the same dose given through peripheral IV [22]. By contrast, the pharmacokinetic profile of some drugs can change when administered by IO access or at low doses [50,51,52,53]. Considering the differences between the pharmacokinetic parameters of these medications, there is much room for further studies.

Although IO technology has become increasingly popular and medical staff have more knowledge of IO, some studies have shown that the current use of IO is not optimistic. Some questionnaires have indicated that IO was primarily used in emergency departments, but the application frequency varied widely. The main reasons for not using IO were lack of equipment and lack of training. There was also no local guidelines on IO infusion [7,8,9, 54]. A web-based survey conducted throughout China has demonstrated that 57.4% respondents have heard of intraosseous access, and the most common way to learn about it was from academic conferences. While 10.3% respondents had access to an intraosseous device in their departments, only 6.9% had ever performed intraosseous procedures [55]. Therefore, the more widespread teaching of this technique for emergency use is recommended.

We applied the GRADE tool to evaluate all outcomes. Considering the first-pass success rate and all three secondary outcomes, the results indicated that the strength of the evidence was moderate. Accordingly, although current evidence supports the notion that IO access may benefit trauma patients in pre-hospital care, more rigorous, well-designed studies are still needed to verify the efficacy in future.

Limitations

The lack of high-quality, large-scale RCTs and the heterogeneity of patients in these retrospective studies are major limitation of our systematic review. The strength of the pooled forces on all four outcomes was moderate. And the survival outcome is not reported by any current study. In addition, a high degree of heterogeneity was observed in meta-analyses of retrospective experiments and in RCTs, which is related to methodological and patient selection heterogeneity in studies. In included articles, the definition of time to resuscitation is not all the same. The study by Paxton et al. reported that measurement of the time to resuscitation began when the skin was sterilized before catheter insertion and ended when the flow of intravenous fluids was subjectively deemed to be adequate for resuscitative purposes, while the other two studies regarded the moment when the blood pressure starts to rise as the end time. This kind of variety of definitions make up one of the major heterogeneities. Considering the low strength of evidence body and high heterogeneity, the results should be explained cautiously, and further large scale, long-term, high-quality RCTs or prospective cohort studies are needed to explore the effectiveness of IO treatment.

留言 (0)

沒有登入
gif