Investigation of targets and anticancer mechanisms of covalently acting natural products by functional proteomics

Butler MS. Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep. 2008;25:475–516.

Article  CAS  PubMed  Google Scholar 

Baker DD, Chu M, Oza U, Rajgarhia V. The value of natural products to future pharmaceutical discovery. Nat Prod Rep. 2007;24:1225–44.

Article  CAS  PubMed  Google Scholar 

Nomura DK, Maimone TJ. Target identification of bioactive covalently acting natural products. Curr Top Microbiol Immunol. 2019;420:351–74.

CAS  PubMed  Google Scholar 

Kingston DGI. Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod. 2011;74:496–511.

Article  CAS  PubMed  Google Scholar 

Zhang T, Hatcher JM, Teng M, Gray NS, Kostic M. Recent advances in selective and irreversible covalent ligand development and validation. Cell Chem Biol. 2019;26:1486–500.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu Y, Chen B, Song JH, Zhen T, Wang BY, Li X, et al. Eriocalyxin B ameliorates experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells. Proc Natl Acad Sci USA. 2013;110:2258–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leung CH, Grill SP, Lam W, Gao W, Sun HD, Cheng YC. Eriocalyxin B inhibits nuclear factor-κB activation by interfering with the binding of both p65 and p50 to the response element in a noncompetitive manner. Mol Pharmacol. 2006;70:1946.

Article  CAS  PubMed  Google Scholar 

Qin GW, Xu RS. Recent advances on bioactive natural products from Chinese medicinal plants. Med Res Rev. 1998;18:375–82.

Article  CAS  PubMed  Google Scholar 

Freund RRA, Gobrecht P, Fischer D, Arndt HD. Advances in chemistry and bioactivity of parthenolide. Nat Prod Rep. 2020;37:541–65.

Article  CAS  PubMed  Google Scholar 

Ghantous A, Sinjab A, Herceg Z, Darwiche N. Parthenolide: from plant shoots to cancer roots. Drug Discov Today. 2013;18:894–905.

Article  CAS  PubMed  Google Scholar 

Liu M, Xiao CQ, Sun MW, Tan MJ, Hu LH, Yu Q. Xanthatin inhibits STAT3 and NF-κB signalling by covalently binding to JAK and IKK kinases. J Cell Mol Med. 2019;23:4301–12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ju A, Cho YC, Cho S. Methanol extracts of Xanthium sibiricum roots inhibit inflammatory responses via the inhibition of nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) in murine macrophages. J Ethnopharmacol. 2015;174:74–81.

Article  PubMed  Google Scholar 

Dai Y, Chen SR, Chai L, Zhao J, Wang Y, Wang Y. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit Rev Food Sci Nutr. 2019;59:S17–29.

Article  CAS  PubMed  Google Scholar 

Li ZZ, Tan JP, Wang LL, Li QH. Andrographolide benefits rheumatoid arthritis via inhibiting MAPK pathways. Inflammation. 2017;40:1599–605.

Article  CAS  PubMed  Google Scholar 

Wen L, Xia N, Chen X, Li Y, Hong Y, Liu Y, et al. Activity of antibacterial, antiviral, anti-inflammatory in compounds andrographolide salt. Eur J Pharmacol. 2014;740:421–7.

Article  CAS  PubMed  Google Scholar 

Gersch M, Kreuzer J, Sieber SA. Electrophilic natural products and their biological targets. Nat Prod Rep. 2012;29:659–82.

Article  CAS  PubMed  Google Scholar 

Wang L, Zhao WL, Yan JS, Liu P, Sun HP, Zhou GB, et al. Eriocalyxin B induces apoptosis of t(8;21) leukemia cells through NF-κB and MAPK signaling pathways and triggers degradation of AML1-ETO oncoprotein in a caspase-3-dependent manner. Cell Death Differ. 2007;14:306–17.

Article  PubMed  Google Scholar 

Wang Y, Ma X, Yan S, Shen S, Zhu H, Gu Y, et al. 17-Hydroxy-jolkinolide B inhibits signal transducers and activators of transcription 3 signaling by covalently cross-linking Janus kinases and induces apoptosis of human cancer cells. Cancer Res. 2009;69:7302.

Article  CAS  PubMed  Google Scholar 

Wang Y, Shen S-Y, Liu L, Zhang X-D, Liu D-Y, Liu N, et al. Jolkinolide B inhibits proliferation or migration and promotes apoptosis of MCF-7 or BT-474 breast cancer cells by downregulating the PI3K-Akt pathway. J Ethnopharmacol. 2022;282:114581.

Article  CAS  PubMed  Google Scholar 

Sohma I, Fujiwara Y, Sugita Y, Yoshioka A, Shirakawa M, Moon JH, et al. Parthenolide, an NF-κB inhibitor, suppresses tumor growth and enhances response to chemotherapy in gastric cancer. Cancer Genom Proteom. 2011;8:39–47.

CAS  Google Scholar 

Mathema VB, Koh YS, Thakuri BC, Sillanpää M. Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities. Inflammation. 2012;35:560–5.

Article  CAS  PubMed  Google Scholar 

Liu M, Xiao C, Sun M, Tan M, Hu L, Yu Q. Parthenolide inhibits STAT3 signaling by covalently targeting Janus kinases. Molecules. 2018;23:1478.

Article  PubMed  PubMed Central  Google Scholar 

Berdan CA, Ho R, Lehtola HS, To M, Hu X, Huffman TR, et al. Parthenolide covalently targets and inhibits focal adhesion kinase in breast cancer cells. Cell Chem Biol. 2019;26:1027–35.e22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi TL, Zhang L, Cheng QY, Yu JS, Liu J, Shen YJ, et al. Xanthatin induces apoptosis by activating endoplasmic reticulum stress in hepatoma cells. Eur J Pharmacol. 2019;843:1–11.

Article  CAS  PubMed  Google Scholar 

Li L, Liu P, Xie Y, Liu Y, Chen Z, Geng Y, et al. Xanthatin inhibits human colon cancer cells progression via mTOR signaling mediated energy metabolism alteration. Drug Dev Res. 2022;83:119–30.

Article  CAS  PubMed  Google Scholar 

Tohkayomatee R, Reabroi S, Tungmunnithum D, Parichatikanond W, Pinthong D. Andrographolide exhibits anticancer activity against breast cancer cells (MCF-7 and MDA-MB-231 cells) through suppressing cell proliferation and inducing cell apoptosis via inactivation of ER-α receptor and PI3K/AKT/mTOR signaling. Molecules. 2022;27:3544.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chou YJ, Lin CC, Hsu YC, Syu JL, Tseng LM, Chiu JH, et al. Andrographolide suppresses the malignancy of triple-negative breast cancer by reducing THOC1-promoted cancer stem cell characteristics. Biochem Pharmacol. 2022;206:115327.

Article  CAS  PubMed  Google Scholar 

Cravatt BF, Simon GM, Yates JR 3rd. The biological impact of mass-spectrometry-based proteomics. Nature. 2007;450:991–1000.

Article  CAS  PubMed  Google Scholar 

Federspiel JD, Codreanu SG, Goyal S, Albertolle ME, Lowe E, Teague J, et al. Specificity of protein covalent modification by the electrophilic proteasome inhibitor Carfilzomib in human cells. Mol Cell Proteom. 2016;15:3233.

Article  CAS  Google Scholar 

Patterson SD, Aebersold RH. Proteomics: the first decade and beyond. Nat Genet. 2003;33:311–23.

Article  CAS  PubMed  Google Scholar 

Domon B, Aebersold R. Mass spectrometry and protein analysis. Science. 2006;312:212–7.

Article  CAS  PubMed  Google Scholar 

Barglow KT, Cravatt BF. Activity-based protein profiling for the functional annotation of enzymes. Nat Methods. 2007;4:822–7.

Article  CAS  PubMed  Google Scholar 

Niphakis MJ, Cravatt BF. Enzyme inhibitor discovery by activity-based protein profiling. Annu Rev Biochem. 2014;83:341–77.

Article  CAS  PubMed  Google Scholar 

Wang C, Weerapana E, Blewett MM, Cravatt BF. A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles. Nat Methods. 2014;11:79–85.

Article  PubMed  Google Scholar 

Lanning BR, Whitby LR, Dix MM, Douhan J, Gilbert AM, Hett EC, et al. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat Chem Biol. 2014;10:760–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, Zhang CJ, Chia WN, Loh CC, Li Z, Lee YM, et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat Commun. 2015;6:10111.

Article  CAS  PubMed  Google Scholar 

Niessen S, Dix MM, Barbas S, Potter ZE, Lu S, Brodsky O, et al. Proteome-wide map of targets of T790M-EGFR-directed covalent inhibitors. Cell Chem Biol. 2017;24:1388–400.e7.

Article  CAS 

留言 (0)

沒有登入
gif