Numerical study among Au, Al, and Ag metal-based surface plasmon resonance sensor

A. Umar, M. Haque, S.G. Ansari, H.K. Seo, A.A. Ibrahim, M.A. Alhamami, Z.A. Ansari, Label-free myoglobin biosensor based on pure and copper-doped titanium dioxide nanomaterials. Biosensors 12(12), 1151 (2022). https://doi.org/10.3390/bios12121151

Article  Google Scholar 

A. Umar, M.S. Akhtar, A.A. Ibrahim, H. Algadi, M.A. Alhamami, F. Ahmed, S. Akbar, Electrospun Co3O4 nanofibers as potential material for enhanced supercapacitors and chemo-sensor applications. J. Market. Res. 21, 5018–5031 (2022). https://doi.org/10.1016/j.jmrt.2022.11.094

Article  Google Scholar 

C. Zhao, W. Guo, A. Umar, H. Algadi, M. Pei, A.A. Ibrahim, L. Wang, High-sensitive ferrocene labeled aptasensor for the detection of Mucin 1 by tuning the sequence constitution of complementary probe. Microchim. Acta 189(9), 1–11 (2022). https://doi.org/10.1007/s00604-022-05424-0

Article  Google Scholar 

S. Yadav, S. Singh, P. Lohia, A. Umar, D.K. Dwivedi, Delineation of profoundly birefringent nonlinear photonic crystal fiber in terahertz frequency regime. J. Opt. Commun. 12(5), 1–8 (2022). https://doi.org/10.1515/joc-2022-0143

Article  Google Scholar 

J. Divya, S. Selvendran, A.S. Raja, A. Sivasubramanian, Surface plasmon based plasmonic sensors—a review on their past, present and future. Biosens. Bioelectron.: X (2022). https://doi.org/10.1016/j.biosx.2022.100175

Article  Google Scholar 

H.-C. Lee, C.-T. Li, H.-F. Chen, T.-J. Yen, Demonstration of an ultrasensitive refractive-index plasmonic sensor by enabling its quadrupole resonance in phase interrogation. Opt. Lett. 40, 5152 (2015). https://doi.org/10.1364/ol.40.005152

Article  ADS  Google Scholar 

J. Homola, Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539 (2003). https://doi.org/10.1007/s00216-003-2101-0

Article  Google Scholar 

I. Abdulhalim, M. Zourob, A. Lakhtakia, Surface plasmon resonance for biosensing: a mini-review. Electromagnetics 28, 214–242 (2008). https://doi.org/10.1080/02726340801921650

Article  Google Scholar 

P. Yupapin, Y. Trabelsi, D. Vigneswaran et al., Ultra-high-sensitive sensor based on surface plasmon resonance structure having Si and graphene layers for the detection of chikungunya virus. Plasmonics (2022). https://doi.org/10.1007/s11468-022-01631-w

Article  Google Scholar 

E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006). https://doi.org/10.1126/science.1114849

Article  ADS  Google Scholar 

S.K. Srivastava, R. Verma, B.D. Gupta, Theoretical modeling of a self-referenced dual mode SPR sensor utilizing indium tin oxide film. Opt. Commun. 369, 131–137 (2016). https://doi.org/10.1016/j.optcom.2016.02.035

Article  ADS  Google Scholar 

A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Phys. 216, 398–410 (1968). https://doi.org/10.1007/BF01391532

Article  ADS  Google Scholar 

E. Kretschmann, H. Raether, Radiative decay of non-radiative surface plasmons by light. Z Naturforsch 23, 2135–2136 (1968)

Article  ADS  Google Scholar 

A.K. Sharma, B. Kaur, V.A. Popescu, On the role of different 2D materials/heterostructures in fiber-optic SPR humidity sensor in visible spectral region. Opt. Mater. 102, 109824 (2020). https://doi.org/10.1016/j.optmat.2020.109824

Article  Google Scholar 

F. Sohrabi, S.M. Hamidi, Neuroplasmonics: from Kretschmann configuration to plasmonic crystals. Eur. Phys. J. Plus. (2016). https://doi.org/10.1140/epjp/i2016-16221-5

Article  Google Scholar 

D. Cai, Y. Lu, K. Lin et al., Improving the sensitivity of SPR sensors based on gratings by double-dips method (DDM). Opt. Exp. 16, 14597 (2008). https://doi.org/10.1364/oe.16.014597

Article  Google Scholar 

M. Lee, H. Jeon, S. Kim, A highly tunable and fully biocompatible silk nanoplasmonic optical sensor. Nano Lett. 15, 3358–3363 (2015). https://doi.org/10.1021/acs.nanolett.5b00680

Article  ADS  Google Scholar 

A.K. Sharma, A.K. Pandey, B. Kaur, A Review of advancements (2007–2017) in plasmonics-based optical fiber sensors. Opt. Fiber Technol. 43, 20–34 (2018). https://doi.org/10.1016/j.yofte.2018.03.008

Article  ADS  Google Scholar 

J.A. Girón-Sedas, O.N. Oliveira, J.R. Mejía-Salazar, Μ-near-zero metamaterial slabs for a new concept of plasmonic sensing platforms. Superlattices Microstruct 117, 423–428 (2018). https://doi.org/10.1016/j.spmi.2018.03.062

Article  ADS  Google Scholar 

P.R. West, S. Ishii, G.V. Naik et al., Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010). https://doi.org/10.1002/lpor.200900055

Article  ADS  Google Scholar 

G.V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013). https://doi.org/10.1002/adma.201205076

Article  Google Scholar 

J. Hakami, A. Abassi, A. Dhibi, Performance enhancement of surface plasmon resonance sensor based on Ag–TiO2-MAPbX3-graphene for the detection of glucose in water. Opt. Quantum Electron. 53, 1–17 (2021). https://doi.org/10.1007/s11082-021-02822-1

Article  Google Scholar 

B.H. Ong, X. Yuan, S.C. Tjin et al., Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor. Sens. Actuators, B Chem. 114, 1028–1034 (2006). https://doi.org/10.1016/j.snb.2005.07.064

Article  Google Scholar 

S. Singh, A.K. Sharma, P. Lohia, D.K. Dwivedi, Sensitivity evaluation of a multi-layered heterostructure blue phosphorene/MoS2 surface plasmon resonance based fiber optic sensor: a simulation study. Trans. Electr. Electron. Mater. (2021). https://doi.org/10.1007/s42341-021-00344-x

Article  Google Scholar 

N. Liu, S. Wang, Q. Cheng et al., High sensitivity in Ni-Based SPR sensor of blue phosphorene/transition metal dichalcogenides hybrid nanostructure. Plasmonics (2021). https://doi.org/10.1007/s11468-021-01421-w

Article  Google Scholar 

M.F. Alotaibi, Y. Al-hadeethi, P. Lohia et al., Numerical study to enhance the sensitivity of a surface plasmon resonance sensor with BlueP /WS2 -Covered Al2O3 -Nickel nanofilms. Nanomaterials 12(13), 2205 (2022). https://doi.org/10.3390/nano12132205

Article  Google Scholar 

S. Singh, P.K. Singh, A. Umar et al., 2D nanomaterial-based surface plasmon resonance sensors for biosensing applications. Micromachines 11, 1–28 (2020). https://doi.org/10.3390/mi11080779

Article  Google Scholar 

A. Umar, M. Haque, S.G. Ansari et al., (2022) Label-free myoglobin biosensor based on pure and copper-doped titanium dioxide nanomaterials. Biosensors 12(12), 1151 (2022). https://doi.org/10.3390/bios12121151

Article  Google Scholar 

G. AlaguVibisha, J.K. Nayak, P. Maheswari et al., Sensitivity enhancement of surface plasmon resonance sensor using hybrid configuration of 2D materials over bimetallic layer of Cu–Ni. Opt Commun (2020). https://doi.org/10.1016/j.optcom.2020.125337

Article  Google Scholar 

V. Yesudasu, H.S. Pradhan, R.J. Pandya, Recent progress in surface plasmon resonance based sensors: a comprehensive review. Heliyon 7, e06321 (2021). https://doi.org/10.1016/j.heliyon.2021.e06321

Article  Google Scholar 

S. Shukla, N.K. Sharma, V. Sajal, Theoretical study of surface plasmon resonance-based fiber optic sensor utilizing cobalt and nickel films. Braz. J. Phys. 46, 288–293 (2016). https://doi.org/10.1007/s13538-016-0406-7

Article  ADS  Google Scholar 

S. Wang, N. Liu, Q. Cheng et al., Surface plasmon resonance on the antimonene–Fe2O3–copper layer for optical attenuated total reflection spectroscopic application. Plasmonics 16, 559–566 (2021). https://doi.org/10.1007/s11468-020-01309-1

Article  Google Scholar 

A. Verma, A.K. Sharma, Y.K. Prajapati, On the sensing performance enhancement in SPR-based Biosensor using specific two-dimensional materials (Borophene and Antimonene). Opt. Mater. 119, 111355 (2021). https://doi.org/10.1016/j.optmat.2021.111355

Article  Google Scholar 

A. Nisha, P. Maheswari, P.M. Anbarasan et al., Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni). Opt. Quantum Electron. (2019). https://doi.org/10.1007/s11082-018-1726-3

Article  Google Scholar 

S. Singh, A.K. Sharma, P. Lohia, D.K. Dwivedi, Ferric oxide and heterostructure BlueP/MoSe2 nanostructure based SPR sensor using magnetic material nickel for sensitivity enhancements. Superlattices Microstruct. (2021). https://doi.org/10.1016/j.spmi.2021.107126

Article  Google Scholar 

S. Singh, A.K. Sharma, P. Lohia, D.K. Dwivedi, Theoretical analysis of sensitivity enhancement of surface plasmon resonance biosensor with zinc oxide and blue phosphorus/MoS2 heterostructure. Optik 244, 167618 (2021). https://doi.org/10.1016/j.ijleo.2021.167618

Article  ADS  Google Scholar 

L. Wu, J. Guo, Q. Wang et al., Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators, B Chem. 249, 542–548 (2017). https://doi.org/10.1016/j.snb.2017.04.110

Article  Google Scholar 

S. Singh, A.K. Sharma, P. Lohia et al., Design and modelling of high - performance surface plasmon resonance refractive index sensor using - BaTiO3 MXene and Nickel hybrid nanostructure. Plasmonics (2022). https://doi.org/10.1007/s11468-022-01692-x

Article  Google Scholar 

S. Pal, Y.K. Prajapati, J.P. Saini, V. Singh, Sensitivity enhancement of metamaterial-based surface plasmon resonance biosensor for near infrared. Opt. Appl. 46, 131–143 (2016). https://doi.org/10.5277/oa160112

Article  Google Scholar 

S. Pal, N. Pal, Y.K. Prajapati, J.P. Saini, Sensitivity analysis of surface plasmon resonance biosensor based on Heterostructure of 2D Blue P/MoS2 and MXene. Layer. 2D Adv. Mater. Allied Appl. (2020). https://doi.org/10.1002/9781119655190.ch5

Article  Google Scholar 

A.K. Mishra, S.K. Mishra, R.K. Verma, Graphene and beyond graphene MoS2: a new window in surface-plasmon-resonance-based fiber optic sensing. J. Phys. Chem. C 120, 2893–2900 (2016). https://doi.org/10.1021/acs.jpcc.5b08955

Article  Google Scholar 

H.H. Jeong, A.G. Mark, M. Alarcón-Correa, I. Kim, P. Oswald, T.C. Lee, P. Fischer, Dispersion and shape engineered plasmonic nanosensors. Nat. Commun. 7(1), 1–7 (2016). https://doi.org/10.1038/ncomms11331

Article  Google Scholar 

A.M. Ahmed, M. Shaban, Highly sensitive Au–Fe2O3–Au and Fe2O3–Au–Fe2O3 biosensors utilizing strong surface plasmon resonance. Appl. Phys. B Lasers Opt. 126, 1–10 (2020). https://doi.org/10.1007/s00340-020-7405-7

Article  ADS  Google Scholar 

X. Yu, Y. Yuan, B. Xiao et al., Flexible plasmonic pressure sensor based on layered two-dimensional heterostructures. J. Light. Technol. 36, 5678–5684 (2018). https://doi.org/10.1109/JLT.2018.2877419

Article  ADS  Google Scholar 

A. Kumar, A.K. Yadav, A.S. Kushwaha, S.K. Srivastava, A comparative study among WS2, MoS2 and graphene based surface plasmon resonance (SPR) sensor. Sens. Actuators Rep. 2, 100015 (2020). https://doi.org/10.1016/j.snr.2020.100015

Article 

留言 (0)

沒有登入
gif