The emerging role of the piRNA/PIWI complex in respiratory tract diseases

Ozata DM, et al. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet. 2019;20(2):89–108.

Article  CAS  PubMed  Google Scholar 

Anfossi S, et al. Clinical utility of circulating non-coding RNAs—an update. Nat Rev Clin Oncol. 2018;15(9):541–63.

Article  PubMed  Google Scholar 

Aravin AA, et al. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr Biol. 2001;11(13):1017–27.

Article  CAS  PubMed  Google Scholar 

Ghosheh Y, et al. Characterization of piRNAs across postnatal development in mouse brain. Sci Rep. 2016;6:25039.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freedman JE, et al. Diverse human extracellular RNAs are widely detected in human plasma. Nat Commun. 2016;7:11106.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perera BPU, et al. Somatic expression of piRNA and associated machinery in the mouse identifies short, tissue-specific piRNA. Epigenetics. 2019;14(5):504–21.

Article  PubMed  PubMed Central  Google Scholar 

Grimson A, et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature. 2008;455(7217):1193–7.

Article  CAS  PubMed  Google Scholar 

Fagegaltier D, et al. Oncogenic transformation of Drosophila somatic cells induces a functional piRNA pathway. Genes Dev. 2016;30(14):1623–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Juliano CE, et al. PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells. Proc Natl Acad Sci U S A. 2014;111(1):337–42.

Article  CAS  PubMed  Google Scholar 

Kiuchi T, et al. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature. 2014;509(7502):633–6.

Article  CAS  PubMed  Google Scholar 

Lim RS, et al. Analysis of Hydra PIWI proteins and piRNAs uncover early evolutionary origins of the piRNA pathway. Dev Biol. 2014;386(1):237–51.

Article  CAS  PubMed  Google Scholar 

Miesen P, Girardi E, van Rij RP. Distinct sets of PIWI proteins produce arbovirus and transposon-derived piRNAs in Aedes aegypti mosquito cells. Nucleic Acids Res. 2015;43(13):6545–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Friedlander MR, et al. High-resolution profiling and discovery of planarian small RNAs. Proc Natl Acad Sci U S A. 2009;106(28):11546–51.

Article  PubMed  PubMed Central  Google Scholar 

Ishino K, et al. Hamster PIWI proteins bind to piRNAs with stage-specific size variations during oocyte maturation. Nucleic Acids Res. 2021;49(5):2700–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aravin A, et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature. 2006;442(7099):203–7.

Article  CAS  PubMed  Google Scholar 

Grivna ST, et al. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev. 2006;20(13):1709–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lau NC, et al. Characterization of the piRNA complex from rat testes. Science. 2006;313(5785):363–7.

Article  CAS  PubMed  Google Scholar 

Brennecke J, et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007;128(6):1089–103.

Article  CAS  PubMed  Google Scholar 

Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet. 2009;10(2):94–108.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Houwing S, et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell. 2007;129(1):69–82.

Article  CAS  PubMed  Google Scholar 

Ohara T, et al. The 3ʹ termini of mouse Piwi-interacting RNAs are 2ʹ-O-methylated. Nat Struct Mol Biol. 2007;14(4):349–50.

Article  CAS  PubMed  Google Scholar 

Czech B, Hannon GJ. One loop to rule them all: the ping-pong cycle and piRNA-guided silencing. Trends Biochem Sci. 2016;41(4):324–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vagin VV, et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science. 2006;313(5785):320–4.

Article  CAS  PubMed  Google Scholar 

Zhang P, et al. piRBase: a web resource assisting piRNA functional study. Database (Oxford). 2014;2014:bau110.

Article  PubMed  PubMed Central  Google Scholar 

Sarkar A, et al. piRNAQuest: searching the piRNAome for silencers. BMC Genomics. 2014;15:555.

Article  PubMed  PubMed Central  Google Scholar 

Sai Lakshmi S, Agrawal S. piRNABank: a web resource on classified and clustered Piwi-interacting RNAs. Nucleic Acids Res. 2008;36(Database issue):D173–7.

Article  CAS  PubMed  Google Scholar 

Rosenkranz D. piRNA cluster database: a web resource for piRNA producing loci. Nucleic Acids Res. 2016;44(D1):D223–30.

Article  CAS  PubMed  Google Scholar 

Lee EJ, et al. Identification of piRNAs in the central nervous system. RNA. 2011;17(6):1090–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Girard A, et al. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature. 2006;442(7099):199–202.

Article  PubMed  Google Scholar 

Goriaux C, et al. Transcriptional properties and splicing of the flamenco piRNA cluster. EMBO Rep. 2014;15(4):411–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohn F, et al. The rhino-deadlock-cutoff complex licenses noncanonical transcription of dual-strand piRNA clusters in Drosophila. Cell. 2014;157(6):1364–79.

Article  CAS  PubMed  Google Scholar 

Zanni V, et al. Distribution, evolution, and diversity of retrotransposons at the flamenco locus reflect the regulatory properties of piRNA clusters. Proc Natl Acad Sci USA. 2013;110(49):19842–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andersen PR, et al. A heterochromatin-dependent transcription machinery drives piRNA expression. Nature. 2017;549(7670):54–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klattenhoff C, et al. The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell. 2009;138(6):1137–49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Z, et al. The HP1 homolog rhino anchors a nuclear complex that suppresses piRNA precursor splicing. Cell. 2014;157(6):1353–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen YA, et al. Cutoff suppresses RNA polymerase II termination to ensure expression of piRNA precursors. Mol Cell. 2016;63(1):97–109.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Le Thomas A, et al. Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. Genes Dev. 2013;27(4):390–9.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif