Modification of Inorganic Fractions of Phosphorus by Phosphate-Solubilising Microorganisms in Conjunction with Phosphorus Fertilisation in a Tropical Inceptisol

Acosta-Martinez V, Tabatabai MA (2000) Enzyme activities in a limed agricultural soil. Biol Fertil Soils 31:85–91. https://doi.org/10.1007/s003740050628

Article  CAS  Google Scholar 

Alam K, Barman M, Datta SP, Kumar S, Annapurna K, Shukla L, Chakraborty D (2020) Efficacy of phosphate solubilizing microorganisms in utilizing native phosphorus in an alkaline alluvial soil of North India. Indian J Agric Sci 90:2199–2203

Article  CAS  Google Scholar 

Alam K, Barman M, Datta SP, Annapurna K, Shukla L, Ray P (2022) Application of phosphate solubilizing fungi and lime altered the soil inorganic phosphorus fractions in an Ultisol of north-eastern India. Soil Sci Plant Nut 68:409–420. https://doi.org/10.1080/00380768.2022.2094204

Article  CAS  Google Scholar 

Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971. https://doi.org/10.3389/fmicb.2017.00971

Article  PubMed  PubMed Central  Google Scholar 

Bajpai PD, Sundara R, WVB. (1971) Phosphate solubilising bacteria. Soil Sci Plant Nut 17:46–53

Article  CAS  Google Scholar 

Balemi T, Negisho K (2012) Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review". J Soil Sci Plant Nutr 12:547–562. https://doi.org/10.4067/S0718-95162012005000015

Article  Google Scholar 

Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D (2018) Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol 9:1606. https://doi.org/10.3389/2Ffmicb.2018.01606

Article  PubMed  PubMed Central  Google Scholar 

Barman M, Shukla LM, Datta SP, Rattan RK (2014) Effect of applied lime and boron on the availability of nutrients in acid soil. J Plant Nutr 37:357–373. https://doi.org/10.1080/01904167.2013.859698

Article  CAS  Google Scholar 

Barman M, Datta SP, Rattan RK, Meena MC (2015) Chemical fractions and bioavailability of nickel in alluvial soils. Plant Soil Environ 61:17–22. https://doi.org/10.17221/613/2014-PSE

Article  CAS  Google Scholar 

Behera BC, Yadav H, Singh SK, Sethi BK, Mishra RR, Kumari S, Thatoi H (2017) Alkaline phosphatase activity of a phosphate solubilizing Alcaligenes faecalis, isolated from Mangrove soil. Biotech Res Innov 1:101–111

Article  Google Scholar 

Bhattacharyya T, Pal DK, Mandal C, Chandran P, Ray SK, Sarkar D, Velmourougane K, Srivastava A, Sidhu GS, Singh RS, Sahoo AK (2013) Soils of India: historical perspective, classification and recent advances. Curr Sci 104:1308–1323

CAS  Google Scholar 

Boschetti NG, Quintero CE, Giuffre L (2009) Phosphorus fractions of soils under Lotus corniculatus as affected by different phosphorus fertilizers. Biol Fertil Soils 45:379–384. https://doi.org/10.1007/s00374-008-0341-z

Article  CAS  Google Scholar 

Chang SC, Jackson ML (1957) Fractionation of soil phosphorus. Soil Sci 84:133–144

Article  CAS  Google Scholar 

Clarholm M (1993) Microbial biomass P, labile P, and acid phosphatase activity in the humus layer of a spruce forest, after repeated additions of fertilizers. Biol Fertil Soils 16:287–292. https://doi.org/10.1007/BF00369306

Article  CAS  Google Scholar 

Datta SP, Rattan RK, Suribabu K, Datta SC (2002) Fractionation and colorimetric determination of boron in soils. J Plant Nutr Soil Sci 165:179–184. https://doi.org/10.1002/1522-624(200204)165:2%3C179::AIDJPLN179%3E3.0.CO;2-Q

Article  CAS  Google Scholar 

Deubel A, Gransee A, Merbach W (2000) Transformation of organic rhizodepositions by rhizosphere bacteria and its influence on the availability of tertiary calcium phosphate. J Plant Nutr Soil Sci 163:387–392. https://doi.org/10.1002/1522-2624(200008)163:4%3c387::AID-JPLN387%3e3.0.CO;2-K

Article  CAS  Google Scholar 

Etesami H, Jeong BR, Glick BR (2021) Contribution of arbuscular mycorrhizal fungi, phosphate-solubilizing bacteria, and silicon to P uptake by plant: a review. Front Plant Sci 12:1355. https://doi.org/10.3389/fpls.2021.699618

Article  Google Scholar 

Gaur AC (1990) Phosphate solubilizing microorganisms as biofertilizers. Omega scientific publishers, New Delhi

Google Scholar 

Goldstein AH (2000) Bioprocessing of rock phosphate ore: essential technical considerations for the development of a successful commercial technology. In: Proceedings of the 4th International Fertilizer Association Technical Conference, IFA, Paris, vol. 220

Hesse PR (2002) Cation and anion exchange properties. A textbook of soil chemical analysis. CBS Publishers and distributors, New Delhi, pp 88–105

Google Scholar 

Illmer P, Barbato A, Schinner F (1995) Solubilization of hardlysoluble AlPO4 with P-solubilizing microorganisms. Soil Bio Biochem 27:265–270

Article  CAS  Google Scholar 

Jackson ML (1973) Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd., New Delhi

Google Scholar 

Jin JY, Martens DC, Zelazny LW (1987) Distribution and plant availability of soil boron fractions. Soil Sci Soc Am J 51:1228–1231. https://doi.org/10.2136/sssaj1987.03615995005100050025x

Article  CAS  Google Scholar 

Kafle A, Cope KR, Raths R, Krishna Yakha J, Subramanian S, Bücking H, Garcia K (2019) Harnessing soil microbes to improve plant phosphate efficiency in cropping systems. Agron 9:127. https://doi.org/10.3390/agronomy9030127

Article  CAS  Google Scholar 

Kalayu G (2019) Phosphate solubilizing microorganisms: promising approach as biofertilizers. Int J Agron 1–7. https://doi.org/10.1155/2019/4917256

Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43

Article  Google Scholar 

Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58

Google Scholar 

Kuo S (1996) Phosphorus. In: Sparks DL (ed) Methods of Soil Analysis Part 3: Chemical Methods, SSSA Book Series 5. Soil Science Society of America, Madison, Wisconsin, pp 869–920

Google Scholar 

Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x

Article  CAS  Google Scholar 

MacDonald K (1961) The hydrolysis of phenyl phosphate by mouse-liver acid phosphatase. Biochem 80:154–161. https://doi.org/10.1042/bj0800154

Article  CAS  Google Scholar 

Manojlovic D, Todorovic M, Jovicic J, Krsmanovic VD, Pfendt PA, Golubovic R (2007) Preservation of water quality in accumulation Lake Rovni: the estimate of the emission of phosphorus from inundation area. Desalination 213:104–109. https://doi.org/10.1016/j.desal.2006.05.058

Article  CAS  Google Scholar 

Marwaha BC (1995) Biofertilizer- a supplementary source of plant nutrient. Fert News (India) 40:39–50

Google Scholar 

Menezes-Blackburn D, Giles C, Darch T, George TS, Blackwell M, Stutter M, Shand C, Lumsdon D, Cooper P, Wendler R, Brown L (2018) Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review. Plant Soil 427:5–16. https://doi.org/10.1007/s11104-017-3362-2

Article  CAS  PubMed  Google Scholar 

Owen D, Williams AP, Withers GGW, PJA, (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphrous acquisition. Applied Soil Ecol 86:41–54

Article  Google Scholar 

Page AL, Miller RH, Keeney DR (1982) Methods of soil analysis. American Society of Agronomy, Madison

Google Scholar 

Pattanayak SK, Sureshkumar P, Tarafdar JC (2009) New vista in phosphorus research. J Indian Soc Soil Sci 57:536–545

Google Scholar 

Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362–370

CAS  Google Scholar 

Richards LA (1954) Diagnosis and Improvement of Saline Alkali Soils, Agriculture, 160, Handbook 60. US Department of Agriculture, Washington DC

Google Scholar 

Roberts TL, Johnston AE (2015) Phosphorus use efficiency and management in agriculture. Resour Conserv Recycl 105:275–281. https://doi.org/10.1016/j.resconrec.2015.09.013

Article  Google Scholar 

Samadi A (2006) Contribution of inorganic phosphorus fractions to plant nutrition in alkaline-calcareous soils. J Agric Sci Technol 8:77–89

Google Scholar 

Sanyal SK, Dwivedi BS, Singh VK, Majumdar K, Datta SC, Pattanayak SK, Annapurna K (2015) Phosphorus in relation to dominant cropping sequences in India: chemistry, fertility relations and management options. Curr Sci 108:1262–1270

CAS  Google Scholar 

Sattari SZ, Bouwman AF, Giller KE, van Ittersum MK (2012) Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc Natl Acad Sci 109:6348–6353. https://doi.org/10.1073/pnas.1113675109

Article  PubMed  PubMed Central  Google Scholar 

Sharma A, Rawat US, Yadav BK (2012) Influence of phosphorus levels and phosphorus solubilizing fungi on yield and nutrient uptake by wheat under sub-humid region of Rajasthan, India. Int Sch Res Notices 2012: 1–9. https://doi.org/10.5402/2012/234656

Sharma PK, Parmar DK (1998) The effect of phosphorus and mulching on the efficiency of phosphorus use and productivity of wheat grown on a mountain Alfisol in the Western Himalayas. Soil Use Manag 14:25–29. https://doi.org/10.1111/j.1475-2743.1998.tb00606.x

Article  Google Scholar 

Singh H, Reddy MS (2011) Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. Eur J Soil Biol 47:30–34. https://doi.org/10.1016/j.ejsobi.2010.10.005

Article  CAS  Google Scholar 

Snedecor GW, Cochran WG (1967) Statistical methods, 6th edn. Iowa State University Press, Iowa, USA

Google Scholar 

Staunton S, Leprince F (1996) Effect of pH and some organic anions on the solubility of soil phosphate: implications for P bioavailability. Eur J Soil Sci 47:231–239. https://doi.org/10.1111/j.1365-2389.1996.tb01394.x

Article  CAS  Google Scholar 

Subbiah BV, Asija GL (1956) A rapid procedure for estimation of available nitrogen in soil. Curr Sci 25:259–260

CAS  Google Scholar 

Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307. https://doi.org/10.1016/0038-0717(69)90012-1

Article  CAS  Google Scholar 

Tariq MR, Shaheen F, Mustafa S, Sajid AL, Fatima A, Shafiq M, Safdar W, Sheas MN, Hameed A, Nasir MA (2022) Phosphate solubilizing microorganisms isolated from medicinal plants improve growth of mint. Peer J 10:13782. https://doi.org/10.7717/2Fpeerj.13782

Article  Google Scholar 

Tian J, Ge F, Zhang D, Deng S, Liu X (2021) Roles of phosphate solubilizing microorgan

留言 (0)

沒有登入
gif