Structural mechanism of Fab domain dissociation as a measure of interface stability

Kaplon H, Reichert JM (2019) Antibodies to watch in 2019. MAbs 11:219–238. https://doi.org/10.1080/19420862.2018.1556465

Article  CAS  PubMed  Google Scholar 

Kaplon H, Muralidharan M, Schneider Z, Reichert JM (2020) Antibodies to watch in 2020. MAbs 12:1703531. https://doi.org/10.1080/19420862.2019.1703531

Article  CAS  PubMed  Google Scholar 

Chames P, Van Regenmortel M, Weiss E, Baty D (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157:220–233. https://doi.org/10.1111/j.1476-5381.2009.00190.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warszawski S, Katz AB, Lipsh R et al (2019) Optimizing antibody affinity and stability by the automated design of the variable light–heavy chain interfaces. PLoS Comput Biol 15:e1007207. https://doi.org/10.1371/journal.pcbi.1007207

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raybould MIJ, Marks C, Krawczyk K et al (2019) Five computational developability guidelines for therapeutic antibody profiling. Proc Natl Acad Sci USA 116:4025–4030. https://doi.org/10.1073/pnas.1810576116

Article  CAS  PubMed  PubMed Central  Google Scholar 

Le Basle Y, Chennell P, Tokhadze N et al (2020) Physicochemical stability of monoclonal antibodies: a review. J Pharm Sci 109:169–190. https://doi.org/10.1016/j.xphs.2019.08.009

Article  CAS  PubMed  Google Scholar 

Yang X, Xu W, Dukleska S et al (2013) Developability studies before initiation of process development. MAbs 5:787–794. https://doi.org/10.4161/mabs.25269

Article  PubMed  PubMed Central  Google Scholar 

Cromwell MEM, Hilario E, Jacobson F (2006) Protein aggregation and bioprocessing. AAPS J 8:E572–E579. https://doi.org/10.1208/aapsj080366

Article  CAS  PubMed  PubMed Central  Google Scholar 

Acierno JP, Braden BC, Klinke S et al (2007) Affinity maturation increases the stability and plasticity of the Fv domain of anti-protein antibodies. J Mol Biol 374:130–146. https://doi.org/10.1016/j.jmb.2007.09.005

Article  CAS  PubMed  Google Scholar 

Fernández-Quintero ML, Loeffler JR, Bacher LM et al (2020) Local and global rigidification upon antibody affinity maturation. Front Mol Biosci 7:182. https://doi.org/10.3389/fmolb.2020.00182

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cauerhff A, Goldbaum FA, Braden BC (2004) Structural mechanism for affinity maturation of an anti-lysozyme antibody. Proc Natl Acad Sci USA 101:3539–3544. https://doi.org/10.1073/pnas.0400060101

Article  CAS  PubMed  PubMed Central  Google Scholar 

Julian MC, Li L, Garde S et al (2017) Efficient affinity maturation of antibody variable domains requires co-selection of compensatory mutations to maintain thermodynamic stability. Sci Rep 7:45259. https://doi.org/10.1038/srep45259

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davies DR, Chacko S (1993) Antibody structure. Acc Chem Res 26:421–427. https://doi.org/10.1021/ar00032a005

Article  CAS  Google Scholar 

Nowak J, Baker T, Georges G et al (2016) Length-independent structural similarities enrich the antibody CDR canonical class model. MAbs 8:751–760. https://doi.org/10.1080/19420862.2016.1158370

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stanfield RL, Takimoto-Kamimura M, Rini JM et al (1993) (1993) Major antigen-induced domain rearrangements in an antibody. Structure (Lond Engl) 1:83–93. https://doi.org/10.1016/0969-2126(93)90024-b

Article  CAS  Google Scholar 

Fernández-Quintero ML, Pomarici ND, Math BA et al (2020) Antibodies exhibit multiple paratope states influencing VH–VL domain orientations. Commun Biol 3:1–14. https://doi.org/10.1038/s42003-020-01319-z

Article  CAS  Google Scholar 

Banfield MJ, King DJ, Mountain A, Brady RL (1997) VL:VH domain rotations in engineered antibodies: crystal structures of the Fab fragments from two murine antitumor antibodies and their engineered human constructs. Proteins Struct Funct Bioinform 29:161–171. https://doi.org/10.1002/(SICI)1097-0134(199710)29:2%3c161::AID-PROT4%3e3.0.CO;2-G

Article  CAS  Google Scholar 

Kuroda D, Tsumoto K (2018) Antibody affinity maturation by computational design. Methods Mol Biol (Clifton NJ) 1827:15–34. https://doi.org/10.1007/978-1-4939-8648-4_2

Article  CAS  Google Scholar 

Joshi KK, Phung W, Han G et al (2019) Elucidating heavy/light chain pairing preferences to facilitate the assembly of bispecific IgG in single cells. MAbs 11:1254–1265. https://doi.org/10.1080/19420862.2019.1640549

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fernández-Quintero ML, Kroell KB, Grunewald LJ et al (2022) CDR loop interactions can determine heavy and light chain pairing preferences in bispecific antibodies. MAbs 14:2024118. https://doi.org/10.1080/19420862.2021.2024118

Article  CAS  PubMed  PubMed Central  Google Scholar 

Billings KS, Best RB, Rutherford TJ, Clarke J (2008) Crosstalk between the protein surface and hydrophobic core in a core-swapped fibronectin type III domain. J Mol Biol 375:560–571. https://doi.org/10.1016/j.jmb.2007.10.056

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuroda D, Tsumoto K (2020) Engineering stability, viscosity, and immunogenicity of antibodies by computational design. J Pharm Sci 109:1631–1651. https://doi.org/10.1016/j.xphs.2020.01.011

Article  CAS  PubMed  Google Scholar 

Chang H-J, Jian J-W, Hsu H-J et al (2014) Loop-sequence features and stability determinants in antibody variable domains by high-throughput experiments. Structure 22:9–21. https://doi.org/10.1016/j.str.2013.10.005

Article  CAS  PubMed  Google Scholar 

Röthlisberger D, Honegger A, Plückthun A (2005) Domain interactions in the Fab fragment: a comparative evaluation of the single-chain Fv and Fab format engineered with variable domains of different stability. J Mol Biol 347:773–789. https://doi.org/10.1016/j.jmb.2005.01.053

Article  CAS  PubMed  Google Scholar 

Adachi M, Kurihara Y, Nojima H et al (2003) Interaction between the antigen and antibody is controlled by the constant domains: normal mode dynamics of the HEL–HyHEL-10 complex. Protein Sci Publ Protein Soc 12:2125–2131

Article  CAS  Google Scholar 

Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI (2019) Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov 18:585–608. https://doi.org/10.1038/s41573-019-0028-1

Article  CAS  PubMed  Google Scholar 

Ma J, Mo Y, Tang M et al (2021) Bispecific antibodies: from research to clinical application. Front Immunol 12:1555. https://doi.org/10.3389/fimmu.2021.626616

Article  CAS  Google Scholar 

Ridgway JB, Presta LG, Carter P (1996) “Knobs-into-holes” engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng 9:617–621. https://doi.org/10.1093/protein/9.7.617

Article  CAS  PubMed  Google Scholar 

De Nardis C, Hendriks LJA, Poirier E et al (2017) A new approach for generating bispecific antibodies based on a common light chain format and the stable architecture of human immunoglobulin G1. J Biol Chem 292:14706–14717. https://doi.org/10.1074/jbc.M117.793497

Article  PubMed  PubMed Central  Google Scholar 

Leaver-Fay A, Froning KJ, Atwell S et al (1993) (2016) Computationally designed bispecific antibodies using negative state repertoires. Structure (Lond Engl) 24:641–651. https://doi.org/10.1016/j.str.2016.02.013

Article  CAS  Google Scholar 

Bönisch M, Sellmann C, Maresch D et al (2017) Novel CH1:CL interfaces that enhance correct light chain pairing in heterodimeric bispecific antibodies. Protein Eng Des Sel 30:685–696. https://doi.org/10.1093/protein/gzx044

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teplyakov A, Obmolova G, Malia TJ et al (2016) Structural diversity in a human antibody germline library. MAbs 8:1045–1063. https://doi.org/10.1080/19420862.2016.1190060

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Wildt RM, Hoet RM, van Venrooij WJ et al (1999) Analysis of heavy and light chain pairings indicates that receptor editing shapes the human antibody repertoire. J Mol Biol 285:895–901. https://doi.org/10.1006/jmbi.1998.2396

Article  PubMed  Google Scholar 

Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

Article  CAS  PubMed  PubMed Central  Google Scholar 

Molecular Operating Environment (MOE) | MOEsaic | PSILO. https://www.chemcomp.com/Products.htm. Accessed 3 Nov 2020

Labute P (2009) Protonate3D: assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins 75:187–205. https://doi.org/10.1002/prot.22234

Article  CAS 

留言 (0)

沒有登入
gif