Comparison of antimicrobial resistant Escherichia coli isolated from Irish commercial pig farms with and without zinc oxide and antimicrobial usage

Destoumieux-Garzón D, Mavingui P, Boetsch G, Boissier J, Darriet F, Duboz P, et al. The one health concept: 10 years old and a long road ahead. Front Vet Sci. 2018;5:14.

Article  PubMed  PubMed Central  Google Scholar 

The Food and Agriculture Organization: drivers, dynamics and epidemiology of antimicrobial resistance in animal production. 2016. https://www.fao.org/3/i6209e/i6209e.pdf. Accessed 26 Jul 2022.

Peng S, Zheng H, Herrero-Fresno A, Olsen JE, Dalsgaard A, Ding Z. Co-occurrence of antimicrobial and metal resistance genes in pig feces and agricultural fields fertilized with slurry. Sci Total Environ. 2021;792:148259.

Article  CAS  PubMed  Google Scholar 

Cheng G, Ning J, Ahmed S, Huang J, Ullah R, An B, et al. Selection and dissemination of antimicrobial resistance in Agri-food production. Antimicrob Resist Infect Control. 2019;8:158.

Article  PubMed  PubMed Central  Google Scholar 

Ramos S, Silva V, Dapkevicius MLE, Caniça M, Tejedor-Junco MT, Igrejas G, et al. Escherichia coli as commensal and pathogenic bacteria among food-producing animals: health implications of extended spectrum β-lactamase (ESBL) production. Animals. 2020;10:2239.

Article  PubMed  PubMed Central  Google Scholar 

Russo TA, Johnson JR. Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect. 2003;5:449–56.

Article  PubMed  Google Scholar 

Luppi A. Swine enteric colibacillosis: diagnosis, therapy and antimicrobial resistance. Porc Health Manag. 2017;3:16.

Article  Google Scholar 

Fairbrother JM, Nadeau E, Gyles CL. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev. 2005;6:17–39.

Article  CAS  PubMed  Google Scholar 

Bonetti A, Tugnoli B, Piva A, Grilli E. Towards zero zinc oxide: feeding strategies to manage post-weaning diarrhea in piglets. Animals. 2021;11:642.

Article  PubMed  PubMed Central  Google Scholar 

European Commission: Veterinary medicines: new rules to promote animal health and fight antimicrobial resistance now apply. 2022. https://ec.europa.eu/commission/presscorner/detail/en/ip_22_663. Accessed 26 Jul 2022.

European Food Safety Authority. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2019–2020. EFSA J. 2022;20:e07209.

Article  CAS  PubMed Central  Google Scholar 

Caruso G. Antibiotic resistance in Escherichia coli from farm livestock and related analytical methods: a review. J AOAC Int. 2018;101:916–22.

Article  CAS  PubMed  Google Scholar 

Anjum MF, Schmitt H, Börjesson S, Berendonk TU, Donner E, Stehling EG, et al. The potential of using E. coli as an indicator for the surveillance of antimicrobial resistance (AMR) in the environment. Curr Opin Microbiol. 2021;64:152–8.

Article  CAS  PubMed  Google Scholar 

Bednorz C, Oelgeschläger K, Kinnemann B, Hartmann S, Neumann K, Pieper R, et al. The broader context of antibiotic resistance: zinc feed supplementation of piglets increases the proportion of multi-resistant Escherichia coli in vivo. Int J Med Microbiol. 2013;303:396–403.

Article  CAS  PubMed  Google Scholar 

Ciesinski L, Guenther S, Pieper R, Kalisch M, Bednorz C, Wieler LH. High dietary zinc feeding promotes persistence of multi-resistant E. coli in the swine gut. PLoS One. 2018;13:e0191660.

Article  PubMed  PubMed Central  Google Scholar 

Liu P, Pieper R, Rieger J, Vahjen W, Davin R, Plendl J, et al. Effect of dietary zinc oxide on morphological characteristics, mucin composition and gene expression in the colon of weaned piglets. PLoS ONE. 2014;9:e91091.

Article  PubMed  PubMed Central  Google Scholar 

Liu P, Pieper R, Tedin L, Martin L, Meyer W, Rieger J, et al. Effect of dietary zinc oxide on jejunal morphological and immunological characteristics in weaned piglets. J Anim Sci. 2014;92:5009–18.

Article  CAS  PubMed  Google Scholar 

Karweina D, Kreuzer-Redmer S, Müller U, Franken T, Pieper R, Baron U, et al. The zinc concentration in the diet and the length of the feeding period affect the methylation status of the ZIP4 zinc transporter gene in piglets. PLoS ONE. 2015;10:e0143098.

Article  PubMed  PubMed Central  Google Scholar 

Bondzio A, Pieper R, Gabler C, Weise C, Schulze P, Zentek J, et al. Feeding low or pharmacological concentrations of zinc oxide changes the hepatic proteome profiles in weaned piglets. PLoS ONE. 2013;8:e81202.

Article  PubMed  PubMed Central  Google Scholar 

Vahjen W, Pietruszyńska D, Starke IC, Zentek J. High dietary zinc supplementation increases the occurrence of tetracycline and sulfonamide resistance genes in the intestine of weaned pigs. Gut Pathog. 2015;7:23.

Article  PubMed  PubMed Central  Google Scholar 

Silver S, Phung LT. Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol. 1996;50:753–89.

Article  CAS  PubMed  Google Scholar 

Byrne N, O’Neill L, Dίaz JAC, Manzanilla EG, Vale AP, Leonard FC. Antimicrobial resistance in Escherichia coli isolated from on-farm and conventional hatching broiler farms in Ireland. Ir Vet J. 2022;75:7.

Article  PubMed  PubMed Central  Google Scholar 

European Commission: Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on veterinary medicinal products and repealing Directive 2001/82/EC. 2019. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0006&from=EN%0Ahttps://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0006&qid=1552299700950&from=EN. Accessed 13 Jan 2023.

European Commission: Regulation (EU) 2019/4 of the European Parliament and of the Council of 11 December 2018 on the manufacture, placing on the market and use of medicated feed, amending Regulation (EC) No 183/2005 of the European Parliament and of the Council and repealing Council Directive 90/167/EEC. 2019. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0004&from=EN. Accessed 13 Jan 2023.

Broom LJ, Miller HM, Kerr KG, Knapp JS. Effects of zinc oxide and Enterococcus faecium SF68 dietary supplementation on the performance, intestinal microbiota and immune status of weaned piglets. Res Vet Sci. 2006;80:45–54.

Article  CAS  PubMed  Google Scholar 

Ghazisaeedi F, Ciesinski L, Bednorz C, Johanns V, Pieper L, Tedin K, et al. Phenotypic zinc resistance does not correlate with antimicrobial multi-resistance in fecal E. coli isolates of piglets. Gut Pathog. 2020;12:4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rovira P, McAllister T, Lakin SM, Cook SR, Doster E, Noyes NR, et al. Characterization of the microbial resistome in conventional and “raised without antibiotics” beef and dairy production systems. Front Microbiol. 2019;10:1980.

Article  PubMed  PubMed Central  Google Scholar 

Roberts MC. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev. 1996;19:1–24.

Article  CAS  PubMed  Google Scholar 

Davies J, O’Connor S. Enzymatic modification of aminoglycoside antibiotics: 3-N-acetyltransferase with broad specificity that determines resistance to the novel aminoglycoside apramycin. Antimicrob Agents Chemother. 1978;14:69–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zurfluh K, Wang J, Klumpp J, Nüesch-Inderbinen M, Fanning S, Stephan R. Vertical transmission of highly similar blaCTX-M-1-harbouring IncI1 plasmids in Escherichia coli with different MLST types in the poultry production pyramid. Front Microbiol. 2014;5:519.

Article  PubMed  PubMed Central  Google Scholar 

Dahmen S, Haenni M, Madec J-Y. IncI1/ST3 plasmids contribute to the dissemination of the blaCTX-M-1 gene in Escherichia coli from several animal species in France. J Antimicrob Chemother. 2012;67:3011–2.

Article  CAS  PubMed  Google Scholar 

Börjesson S, Bengtsson B, Jernberg C, Englund S. Spread of extended-spectrum beta-lactamase producing Escherichia coli isolates in Swedish broilers mediated by an incI plasmid carrying blaCTX-M-1. Acta Vet Scand. 2013;55:3.

Article  PubMed  PubMed Central  Google Scholar 

Mo SS, Telke AA, Osei KO, Sekse C, Slettemeås JS, Urdahl AM, et al. blaCTX–M–1/IncI1-Iγ plasmids circulating in Escherichia coli from Norwegian broiler production are related, but distinguishable. Front Microbiol. 2020;11:333.

Article  PubMed  PubMed Central  Google Scholar 

Leverstein-van Hall MA, Dierikx CM, Stuart JC, Voets GM, van den Munckhof MP, van Essen-Zandbergen A, et al. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect. 2011;17:873–80.

Article  CAS  PubMed  Google Scholar 

Abraham S, Kirkwood RN, Laird T, Saputra S, Mitchell T, Singh M, et al. Dissemination and persistence of extended-spectrum cephalosporin-resistance encoding IncI1-blaCTXM-1 plasmid among Escherichia coli in pigs. ISME J. 2018;12:2352–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hiley L, Graham RMA, Jennison AV. Characterisation of IncI1 plasmids associated with change of phage type in isolates of Salmonella enterica serovar Typhimurium. BMC Microbiol. 2021;21:92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mena A, Plasencia V, García L, Hidalgo O, Ayestarán JI, Alberti S, et al. Characterization of a large outbreak by CTX-M-1-producing Klebsiella pneumoniae and mechanisms leading to in vivo carbapenem resistance development. J Clin Microbiol. 2006;44:2831–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hassan J, Eddine RZ, Mann D, Li S, Deng X, Saoud IP, et al. The mobile colistin resistance gene, mcr-1.1, is carried on IncX4 plasmids in multidrug resistant E. coli isolated from rainbow trout aquaculture. Microorganisms. 2020;8:1636.

留言 (0)

沒有登入
gif