Tissue-specific macrophages: how they develop and choreograph tissue biology

Jenkins, S. J. & Allen, J. E. The expanding world of tissue-resident macrophages. Eur. J. Immunol. 51, 1882–1896 (2021).

Article  CAS  PubMed  Google Scholar 

Mass, E. et al. Specification of tissue-resident macrophages during organogenesis. Science 353, aaf4238 (2016). This paper describes a macrophage developmental atlas, showing that pMacs are the main progenitors of early tissue-resident macrophages.

Article  PubMed  PubMed Central  Google Scholar 

Dick, S. A. et al. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Sci. Immunol. 7, 7777 (2022).

Article  Google Scholar 

Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2015). This paper demonstrates that macrophages derive from EMPs.

Article  PubMed  Google Scholar 

Hoeffel, G. et al. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42, 665–678 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013). Together with Hashimoto et al. (2013), these papers demonstrate that tissue-resident macrophages are self-maintaining throughout adulthood.

Article  CAS  PubMed  Google Scholar 

Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013).

Article  CAS  PubMed  Google Scholar 

Schulz, C. et al. A lineage of myeloid cells independent of myb and hematopoietic stem cells. Science https://doi.org/10.1126/science.1219179 (2012). This paper shows that several tissue-resident macrophage populations are derived from fetal progenitors.

Article  PubMed  Google Scholar 

Perdiguero, E. G. & Geissmann, F. The development and maintenance of resident macrophages. Nat. Immunol. 17, 2–8 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mass, E. Delineating the origins, developmental programs and homeostatic functions of tissue-resident macrophages. Int. Immunol. 30, 493–501 (2018).

Article  CAS  PubMed  Google Scholar 

Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, Z. et al. Fate mapping via Ms4a3-expression history traces monocyte-derived. cells Cell 178, 1509–1525.e19 (2019).

Article  CAS  PubMed  Google Scholar 

Werner, Y. et al. Cxcr4 distinguishes HSC-derived monocytes from microglia and reveals monocyte immune responses to experimental stroke. Nat. Neurosci. 23, 351–362 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lai, S. M. et al. Organ-specific fate, recruitment, and refilling dynamics of tissue-resident macrophages during blood-stage malaria. Cell Rep. 25, 3099–3109.e3 (2018).

Article  CAS  PubMed  Google Scholar 

Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16, 273–280 (2013).

Article  CAS  PubMed  Google Scholar 

Hagemeyer, N. et al. Transcriptome‐based profiling of yolk sac‐derived macrophages reveals a role for Irf8 in macrophage maturation. EMBO J. 35, 1730–1744 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Masuda, T. et al. Specification of CNS macrophage subsets occurs postnatally in defined niches. Nature 604, 740–748 (2022). This paper shows that pMacs give rise to microglia and meningeal macrophages during embryogenesis, whereas perivascular macrophages originate from perinatal meningeal macrophages only after birth.

Article  CAS  PubMed  Google Scholar 

Utz, S. G. et al. Early fate defines microglia and non-parenchymal brain macrophage development. Cell 181, 557–573.e18 (2020).

Article  CAS  PubMed  Google Scholar 

Goldmann, T. et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat. Neurosci. 16, 1618–1626 (2013).

Article  CAS  PubMed  Google Scholar 

Tay, T. L. et al. A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat. Neurosci. 20, 793–803 (2017).

Article  CAS  PubMed  Google Scholar 

Füger, P. et al. Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat. Neurosci. 20, 1371–1376 (2017).

Article  PubMed  Google Scholar 

Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13, 753–760 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greter, M. et al. Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity 37, 1050–1060 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Erblich, B., Zhu, L., Etgen, A. M., Dobrenis, K. & Pollard, J. W. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS ONE 6, e26317 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

Article  CAS  PubMed  Google Scholar 

Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).

Article  CAS  PubMed  Google Scholar 

Cserép, C. et al. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 367, 528–537 (2020).

Article  PubMed  Google Scholar 

Du, Y., Brennan, F. H., Popovich, P. G. & Zhou, M. Microglia maintain the normal structure and function of the hippocampal astrocyte network. Glia 70, 1359–1379 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bisht, K. et al. Capillary-associated microglia regulate vascular structure and function through PANX1-P2RY12 coupling in mice. Nat. Commun. 12, 5289 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fantin, A. et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood https://doi.org/10.1182/blood-2009-12-257832 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

Article  CAS  PubMed  Google Scholar 

Tremblay, M.-È., Lowery, R. L. & Majewska, A. K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 8, e1000527 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Hagemeyer, N. et al. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol. 134, 441–458 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Wlodarczyk, A. et al. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J. 36, 3292–3308 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Waisman, A., Ginhoux, F., Greter, M. & Bruttger, J. Homeostasis of microglia in the adult brain: review of novel microglia depletion systems. Trends Immunol. 36, 625–636 (2015).

Article  CAS  PubMed  Google Scholar 

van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).

Article  CAS  PubMed  Google Scholar 

Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif