AAV-Net1 facilitates the trans-differentiation of supporting cells into hair cells in the murine cochlea

Kelley MW (2006) Regulation of cell fate in the sensory epithelia of the inner ear. Nat Rev Neurosci 7(11):837–849

Article  CAS  PubMed  Google Scholar 

Fekete DM, Muthukumar S, Karagogeos D (1998) Hair cells and supporting cells share a common progenitor in the avian inner ear. J Neurosci 18(19):7811–7821

Article  CAS  PubMed  PubMed Central  Google Scholar 

Driver EC, Sillers L, Coate TM et al (2013) The Atoh1-lineage gives rise to hair cells and supporting cells within the mammalian cochlea. Dev Biol 376(1):86–98

Article  CAS  PubMed  PubMed Central  Google Scholar 

White PM, Doetzlhofer A, Lee YS et al (2006) Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 441(7096):984–987

Article  CAS  PubMed  Google Scholar 

Chai R, Kuo B, Wang T et al (2012) Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea. Proc Natl Acad Sci USA 109(21):8167–8172

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sinkkonen ST, Chai R, Jan TA et al (2011) Intrinsic regenerative potential of murine cochlear supporting cells. Sci Rep 1:26

Article  PubMed  PubMed Central  Google Scholar 

Atkinson PJ, Dong Y, Gu S et al (2018) Sox2 haploinsufficiency primes regeneration and Wnt responsiveness in the mouse cochlea. J Clin Invest 128(4):1641–1656

Article  PubMed  PubMed Central  Google Scholar 

Cheng C, Guo L, Lu L et al (2017) Characterization of the transcriptomes of Lgr5+ hair cell progenitors and Lgr5– supporting cells in the mouse cochlea. Front Mol Neurosci 10:122

Article  PubMed  PubMed Central  Google Scholar 

Zhang Y, Guo L, Lu X et al (2018) Characterization of Lgr6+ cells as an enriched population of hair cell progenitors compared to Lgr5+ cells for hair cell generation in the neonatal mouse cochlea. Front Mol Neurosci 11:147

Article  PubMed  PubMed Central  Google Scholar 

Cox BC, Chai R, Lenoir A et al (2014) Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development 141(4):816–829

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang T, Chai R, Kim GS et al (2015) Lgr5+ cells regenerate hair cells via proliferation and direct transdifferentiation in damaged neonatal mouse utricle. Nat Commun 6:6613

Article  CAS  PubMed  Google Scholar 

Zhang S, Zhang Y, Yu P et al (2017) Characterization of Lgr5+ progenitor cell transcriptomes after neomycin injury in the neonatal mouse cochlea. Front Mol Neurosci 10:213

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bramhall NF, Shi F, Arnold K et al (2014) Lgr5-positive supporting cells generate new hair cells in the postnatal cochlea. Stem Cell Reports 2(3):311–322

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schimmang T (2007) Expression and functions of FGF ligands during early otic development. Int J Dev Biol 51(6–7):473–481

Article  CAS  PubMed  Google Scholar 

Groves AK, Fekete DM (2012) Shaping sound in space: the regulation of inner ear patterning. Development 139(2):245–257

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jansson L, Kim GS, Cheng AG (2015) Making sense of Wnt signaling-linking hair cell regeneration to development. Front Cell Neurosci 9:66

Article  PubMed  PubMed Central  Google Scholar 

Żak M, Klis SF, Grolman W (2015) The Wnt and Notch signalling pathways in the developing cochlea: formation of hair cells and induction of regenerative potential. Int J Dev Neurosci 47(Pt B):247–258

Article  PubMed  Google Scholar 

Costa A, Powell LM, Lowell S et al (2017) Atoh1 in sensory hair cell development: constraints and cofactors. Semin Cell Dev Biol 65:60–68

Article  CAS  PubMed  Google Scholar 

Walters BJ, Coak E, Dearman J et al (2017) In vivo interplay between p27(Kip1), GATA3, ATOH1, and POU4F3 converts non-sensory cells to hair cells in adult mice. Cell Rep 19(2):307–320

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuo BR, Baldwin EM, Layman WS et al (2015) In vivo cochlear hair cell generation and survival by coactivation of β-Catenin and Atoh1. J Neurosci 35(30):10786–10798

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi F, Hu L, Edge AS (2013) Generation of hair cells in neonatal mice by β-catenin overexpression in Lgr5-positive cochlear progenitors. Proc Natl Acad Sci USA 110(34):13851–13856

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ni W, Zeng S, Li W et al (2016) Wnt activation followed by Notch inhibition promotes mitotic hair cell regeneration in the postnatal mouse cochlea. Oncotarget 7(41):66754–66768

Article  PubMed  PubMed Central  Google Scholar 

Li W, Wu J, Yang J et al (2015) Notch inhibition induces mitotically generated hair cells in mammalian cochleae via activating the Wnt pathway. Proc Natl Acad Sci USA 112(1):166–171

Article  CAS  PubMed  Google Scholar 

Wu J, Li W, Lin C et al (2016) Co-regulation of the Notch and Wnt signaling pathways promotes supporting cell proliferation and hair cell regeneration in mouse utricles. Sci Rep 6:29418

Article  PubMed  PubMed Central  Google Scholar 

Chan AM, Takai S, Yamada K et al (1996) Isolation of a novel oncogene, NET1, from neuroepithelioma cells by expression cDNA cloning. Oncogene 12(6):1259–1266

CAS  PubMed  Google Scholar 

Murray D, Horgan G, Macmathuna P et al (2008) NET1-mediated RhoA activation facilitates lysophosphatidic acid-induced cell migration and invasion in gastric cancer. Br J Cancer 99(8):1322–1329

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348(Pt 2):241–255

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boguski MS, McCormick F (1993) Proteins regulating Ras and its relatives. Nature 366(6456):643–654

Article  CAS  PubMed  Google Scholar 

Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6(2):167–180

Article  CAS  PubMed  Google Scholar 

Zong W, Feng W, Jiang Y et al (2020) LncRNA CTC-497E21.4 promotes the progression of gastric cancer via modulating miR-22/NET1 axis through RhoA signaling pathway. Gastric Cancer 23(2):228–240

Article  CAS  PubMed  Google Scholar 

Leyden J, Murray D, Moss A et al (2006) Net1 and Myeov: computationally identified mediators of gastric cancer. Br J Cancer 94(8):1204–1212

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schneider EH, Hofmeister O, Kälble S et al (2020) Apoptotic and anti-proliferative effect of guanosine and guanosine derivatives in HuT-78 T lymphoma cells. Naunyn Schmiedebergs Arch Pharmacol 393(7):1251–1267

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Xia P, Zhang W et al (2017) Short interfering RNA targeting Net1 reduces the angiogenesis and tumor growth of in vivo cervical squamous cell carcinoma through VEGF down-regulation. Hum Pathol 65:113–122

Article  CAS  PubMed  Google Scholar 

Miyakoshi A, Ueno N, Kinoshita N (2004) Rho guanine nucleotide exchange factor xNET1 implicated in gastrulation movements during Xenopus development. Differentiation 72(1):48–55

Article  CAS  PubMed  Google Scholar 

Wei S, Dai M, Liu Z et al (2017) The guanine nucleotide exchange factor Net1 facilitates the specification of dorsal cell fates in zebrafish embryos by promoting maternal β-catenin activation. Cell Res 27(2):202–225

Article  CAS  PubMed  Google Scholar 

Tan F, Chu C, Qi J et al (2019) AAV-ie enables safe and efficient gene transfer to inner ear cells. Nat Commun 10(1):3733

Article 

留言 (0)

沒有登入
gif