Activating α7nAChR helps post-myocardial infarction healing by regulating macrophage polarization via the STAT3 signaling pathway

Reyes-Retana JA, Duque-Ossa LC. Acute myocardial infarction biosensor: a review from bottom up. Curr Probl Cardiol. 2021;46(3): 100739.

Article  CAS  PubMed  Google Scholar 

Saleh M, Ambrose JA. Understanding myocardial infarction. F1000Res. 2018;7.

Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39(7):1073–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res. 2016;119(1):91–112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Loi H, Kramar S, Laborde C, Marsal D, Pizzinat N, Cussac D, et al. Metformin Attenuates Postinfarction Myocardial Fibrosis and Inflammation in Mice. Int J Mol Sci. 2021;22 (17).

Lee WW, Marinelli B, van der Laan AM, Sena BF, Gorbatov R, Leuschner F, et al. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol. 2012;59(2):153–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007;204(12):3037–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013;339(6116):161–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hilgendorf I, Gerhardt LM, Tan TC, Winter C, Holderried TA, Chousterman BG, et al. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ Res. 2014;114(10):1611–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dewald O, Zymek P, Winkelmann K, Koerting A, Ren G, Abou-Khamis T, et al. CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res. 2005;96(8):881–9.

Article  CAS  PubMed  Google Scholar 

Frantz S, Nahrendorf M. Cardiac macrophages and their role in ischaemic heart disease. Cardiovasc Res. 2014;102(2):240–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gombozhapova A, Rogovskaya Y, Shurupov V, Rebenkova M, Kzhyshkowska J, Popov SV, et al. Macrophage activation and polarization in post-infarction cardiac remodeling. J Biomed Sci. 2017;24(1):13.

Article  PubMed  PubMed Central  Google Scholar 

Ong SB, Hernandez-Resendiz S, Crespo-Avilan GE, Mukhametshina RT, Kwek XY, Cabrera-Fuentes HA, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther. 2018;186:73–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guarini S, Altavilla D, Cainazzo MM, Giuliani D, Bigiani A, Marini H, et al. Efferent vagal fibre stimulation blunts nuclear factor-kappaB activation and protects against hypovolemic hemorrhagic shock. Circulation. 2003;107(8):1189–94.

Article  PubMed  Google Scholar 

Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest. 2007;117(2):289–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li DJ, Evans RG, Yang ZW, Song SW, Wang P, Ma XJ, et al. Dysfunction of the cholinergic anti-inflammatory pathway mediates organ damage in hypertension. Hypertension. 2011;57(2):298–307.

Article  CAS  PubMed  Google Scholar 

Wu SJ, Li YC, Shi ZW, Lin ZH, Rao ZH, Tai SC, et al. Alteration of cholinergic anti-inflammatory pathway in rat with ischemic cardiomyopathy-modified electrophysiological function of heart. J Am Heart Assoc. 2017;6 (9).

Li-Sha G, Xing-Xing C, Lian-Pin W, De-Pu Z, Xiao-Wei L, Jia-Feng L, et al. Right cervical vagotomy aggravates viral myocarditis in mice via the cholinergic anti-inflammatory pathway. Front Pharmacol. 2017;8:25.

Article  PubMed  PubMed Central  Google Scholar 

Zhao M, He X, Bi XY, Yu XJ, Gil Wier W, Zang WJ. Vagal stimulation triggers peripheral vascular protection through the cholinergic anti-inflammatory pathway in a rat model of myocardial ischemia/reperfusion. Basic Res Cardiol. 2013;108(3):345.

Article  PubMed  Google Scholar 

Fang J, Wang J, Chen F, Xu Y, Zhang H, Wang Y. alpha7nAChR deletion aggravates myocardial Infarction and enhances systemic inflammatory reaction via mTOR-signaling-related autophagy. Inflammation. 2019;42(4):1190–202.

Article  CAS  PubMed  Google Scholar 

Yang H, Liu S, Du H, Hong Z, Lv Y, Nie C, et al. Hydrogen attenuates myocardial injury in rats by regulating oxidative stress and nlrp3 inflammasome mediated pyroptosis. Int J Med Sci. 2021;18(14):3318–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li HJ, Sun ZL, Pan YB, Xu MH, Feng DF. Effect of alpha7nAChR on learning and memory dysfunction in a rat model of diffuse axonal injury. Exp Cell Res. 2019;383(2): 111546.

Article  CAS  PubMed  Google Scholar 

Carlos DH, Bibiana Roselly CR, Angel UL, Laura MA, Kenya Karina SR, Jose Manuel CB, et al. Cognitive improvements in a rat model with polyunsaturated fatty acids EPA and DHA through alpha7-nicotinic acetylcholine receptors. Nutr Neurosci. 2022;25(4):791–800.

Article  CAS  PubMed  Google Scholar 

Deng Y, Guo SL, Wei B, Gao XC, Zhou YC, Li JQ. Activation of nicotinic acetylcholine alpha7 receptor attenuates progression of monocrotaline-induced pulmonary hypertension in rats by downregulating the NLRP3 inflammasome. Front Pharmacol. 2019;10:128.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yin M, van der Horst IC, van Melle JP, Qian C, van Gilst WH, Sillje HH, et al. Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure. Am J Physiol Heart Circ Physiol. 2011;301(2):H459–68.

Article  CAS  PubMed  Google Scholar 

Obana M, Maeda M, Takeda K, Hayama A, Mohri T, Yamashita T, et al. Therapeutic activation of signal transducer and activator of transcription 3 by interleukin-11 ameliorates cardiac fibrosis after myocardial infarction. Circulation. 2010;121(5):684–91.

Article  CAS  PubMed  Google Scholar 

Feuerborn R, Becker S, Poti F, Nagel P, Brodde M, Schmidt H, et al. High density lipoprotein (HDL)-associated sphingosine 1-phosphate (S1P) inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression. Atherosclerosis. 2017;257:29–37.

Article  CAS  PubMed  Google Scholar 

Gao S, Mao F, Zhang B, Zhang L, Zhang X, Wang M, et al. Mouse bone marrow-derived mesenchymal stem cells induce macrophage M2 polarization through the nuclear factor-kappaB and signal transducer and activator of transcription 3 pathways. Exp Biol Med (Maywood). 2014;239(3):366–75.

Article  PubMed  Google Scholar 

Guo Q, Zhu X, Wei R, Zhao L, Zhang Z, Yin X, et al. miR-130b-3p regulates M1 macrophage polarization via targeting IRF1. J Cell Physiol. 2021;236(3):2008–22.

Article  CAS  PubMed  Google Scholar 

Scherrer-Crosbie M, Ullrich R, Bloch KD, Nakajima H, Nasseri B, Aretz HT, et al. Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice. Circulation. 2001;104(11):1286–91.

Article  CAS  PubMed  Google Scholar 

Potus F, Ruffenach G, Dahou A, Thebault C, Breuils-Bonnet S, Tremblay E, et al. Downregulation of microrna-126 contributes to the failing right ventricle in pulmonary arterial hypertension. Circulation. 2015;132(10):932–43.

Article  CAS  PubMed  Google Scholar 

Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med. 2017;104:298–310.

Article  CAS  PubMed  Google Scholar 

Jacoby JJ, Kalinowski A, Liu MG, Zhang SS, Gao Q, Chai GX, et al. Cardiomyocyte-restricted knockout of STAT3 results in higher sensitivity to inflammation, cardiac fibrosis, and heart failure with advanced age. Proc Natl Acad Sci U S A. 2003;100(22):12929–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giuliani C, Napolitano G, Bucci I, Montani V, Monaco F. Nf-kB transcription factor: role in the pathogenesis of inflammatory, autoimmune, and neoplastic diseases and therapy implications. Clin Ter. 2001;152(4):249–53.

CAS  PubMed  Google Scholar 

de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol. 2005;6(8):844–51.

Article  PubMed  Google Scholar 

Joe Y, Kim HJ, Kim S, Chung J, Ko MS, Lee WH, et al. Tristetraprolin mediates anti-inflammatory effects of nicotine in lipopolysaccharide-stimulated macrophages. J Biol Chem. 2011;286(28):24735–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif