The Study of Potentially Lignocellulolytic Actinobacteria Pseudonocardia sp. AI2

Pérez J, Muñoz-Dorado J, de la Rubia T, Martínez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

Article  PubMed  Google Scholar 

Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory byproducts and strategies for minimizing their effects. Biores Technol 199:103–112

Article  Google Scholar 

Chio C et al (2019) Lignin utilization: a review of lignin depolymerization from various aspects. Renew Sustain Energy Rev 107:232–249

Article  CAS  Google Scholar 

Bilala M et al (2021) Exploring the potential of ligninolytic armory for lignin valorization—a way forward for sustainable and cleaner production. J Clean Prod 326:129420

Article  Google Scholar 

Cao Y et al (2019) Advances in lignin valorization towards bio-based chemicals and fuels: lignin biorefinery. Biores Technol 291:121878

Article  CAS  Google Scholar 

Nguyen LT et al (2020) Valorization of industrial lignin to value-added chemicals by chemical depolymerization and biological conversion. Ind Crops Prod 161:113219

Article  Google Scholar 

Devi MD, Kumar MS (2012) Production, optimization and partial purification of cellulase by Aspergillus niger fermented with paper and timber sawmill industrial wastes. J Microbiol Biotechnol Res 2:120–128

Google Scholar 

Kumar M et al (2021) Lignin valorization by bacterial genus Pseudomonas: state-of-the-art review and prospects. Biores Technol 320:124412

Article  CAS  Google Scholar 

Lu H, Yadavc V (2022) Bioengineered microbial platforms for biomass-derived biofuel production. Chemosphere 288:132528

Article  CAS  PubMed  Google Scholar 

Awojobi KO et al (2013) The screening and selection of Trichoderma species capable of producing extracellular cellulolytic enzymes from soil of decaying plant materials. Ife J Sci 15:263–271

Google Scholar 

Maki M, Leung KT, Qin V (2009) Prospects of cellulase-producing bacteria for bioconversion of lignocellulose biomass. Int J Biol Sci 5:500–516

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ni’matuzahrohab KS et al (2020) Bioconversion of agricultural waste hydrolysate from lignocellulose mold into biosurfactant using Achromobacter sp. BP(1)5. Biocatal Agric Biotechnol 24:101534

Article  Google Scholar 

Kumar M et al (2018) Genomic and proteomic analysis of the degrading lignin and accumulating polyhydroxyalkanoate beta-proteobacterium Pandoraea sp. ISTQB. Biotechnol Prod Biofuels 11:1–23

Google Scholar 

Xu R et al (2018) Depolymerization and utilization of lignin by bacteria. Bioresour Technol 269:557–566

Article  CAS  PubMed  Google Scholar 

Rashid GM et al (2015) Identification of manganese superoxide dismutase from Sphingobacterium sp. T2 as a new bacterial enzyme for lignin oxidation. ACS Chem Biol 10:2286–2294

Article  CAS  PubMed  Google Scholar 

Li H et al (2019) Discovery of potential ways of biological transformation of poplar wood into lipids by co-fermentation of strains of rhodococci. Biotechnol Biofuel Prod 12:1–16

Google Scholar 

Gobalakrishnana R, Sivakumarb K (2017) Systematic characterization of potential cellulolytic marine actinobacteria Actinoalloteichus sp. MHA15. Rep Biotechnol 13:30–36

Article  Google Scholar 

Sarkar G, Suthindhiran K (2022) Diversity and biotechnological potential of marine actinomycetes from India. Indian J Microbiol 62:475–493

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kämpfer P, Kroppenstedt RM (2004) Pseudonocardia benzenivorans sp. nov. Int J Syst Evol Microbiol 54:749–751

Article  PubMed  Google Scholar 

Teaser RM, Wood PJ (1982) The use of interactions of red Congo with polysaccharides for the determination and characterization of cellulolytic bacteria from the rumen of cattle. Appl Environ Microbiol 43:777–780

Article  Google Scholar 

Solovieva I et al (2005) Preparation and properties of Penicillium verruculosum mutants, superproducers of cellulases and xylanases. Microbiology 74:172–178

Google Scholar 

Polygalina GV, Cherednichenko VS, Rimareva LV (2003) Enzymatic analysis. Delicatessen printing, Moscow (in Russian)

Google Scholar 

Bile JR, Cavalieri SJ, Felland T, Zimmer BL (1996) A new method for rapid identification of nocardiospecies by detecting completed enzymes. J Clin Microbiol 34:103–107

Article  Google Scholar 

Leon J, Lisa L, Soto I, Cuadra D, Patino L, Zerpa R (2007) Bioactive actinomycetes from marine sediments of the central coast of Peru. Rev Up Peru With Boiling Water 14:259–270

Article  Google Scholar 

Mina B, Rajan LA, Vinitkumar NV, Kirubagaran R (2013) New marine actinobacteria from the emerald Andaman and Nicobar Islands: a promising source of industrial and pharmaceutical by-products. Microbiol BMC 22:145

Article  Google Scholar 

Innis M, Gelfand D, Sninski J (1990) PCR protocols:a guide to methods and applications

Pavlicek A et al (1999) Fre-tree is a free program for constructing phylogenetic trees based on distance data and analyzing the reliability of the bootstrap\jackknife tree application in the RAPD analysis of genus Frenkelia. Folia Biol 45:97–99

CAS  Google Scholar 

Wang Z, Xu Yan Li J, Wang K, Wang Y, Hong K, Li UJ, Li SP (2010) Rhodococcus jialingiae sp. nov., actinobacterium isolated from sediment of carbendazim treatment plants. Int J Syst Evol Microbiol 60:378–381

Article  CAS  PubMed  Google Scholar 

Ratnan RK, Ambili M (2011) Production of Streptomyces sp cellulase enzyme using fruit waste as a substrate. Aust J Basic Appl Sci 5:1114–1118

Google Scholar 

Bolobova AV et al (2002) Theoretical foundations of biotechnology of wood composites. Enzymes, models, processes. 2:343. [in Russian]

Abdelaziz O et al (2016) Biological evaluation of low molecular weight lignin. Biotechnol Adv 34:1318–1346

Article  CAS  PubMed  Google Scholar 

Palamuru S et al (2015) Phylogenetic and kinetic characteristics of a set of dehydrogenases from a recently isolated bacterium, strain SG61-1L, which catalyze the turnover of stereoisomers of guaiacyl-glycerol-β-guaiacyl ether. Environ Microbiol Appl 81:8164–8176

Article  CAS  Google Scholar 

Garau G et al (2014) Stabilization of metals (loid) in soil by products based on iron and aluminum: microbiological, biochemical effects and effects on plant growth. J Environ Guide 139:146–153

CAS  Google Scholar 

Omran R (2015) Corrosion damage of concrete infrastructures as a promising source for the isolation of bioactive actinobacteria. Am J Life Sci 3:247–256

Article  Google Scholar 

Huang Y et al (2002) Proposal to combine the genera Actino-bispora and Pseudonocardia into the corrected genus Pseudonocardia and description of Pseudonocardia zijingensis sp. nov. Internal Syst Evolut Microbiol 52:977–982

CAS  Google Scholar 

Tanvir R, Sajid I, Hasnain S, Kulik A, Grond S (2016) Rare actinomycetes Nocardia caishijiensis and Pseudonocardia carboxydivorans as endophytes, assessment of their biological activity and metabolites. Microbiol Stud 185:22–35

CAS  Google Scholar 

Mangamuri UK, Vijayalakshmi M, Poda S, Manavathi B, Chitturi B, Yenamandra V (2016) Isolation and biological evaluation of N-(4-aminocyclooctyl)-3, 5-dinitrobenzamide, a new semisynthetic derivative from the Mangrove-associated actinomycete Pseudonocardia endophytica VUK-10. 3Biotech. https://doi.org/10.1007/s13205-016-0472-0

Article  Google Scholar 

Qin S, Su Y-Y, Zhang Y-Q, Wang H-B, Jiang CL, Xu LH, Li W-J (2008) Pseudonocardia ailaonensis sp. nov., isolated from soil in China. Int J Syst Evol Microbiol 58:2086–2089

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif