Are extraordinary nucleosome structures more ordinary than we thought?

Ali-Ahmad A, Bilokapic S, Schafer IB, Halic M, Sekulic N (2019) CENP-C unwraps the human CENP-A nucleosome through the H2A C-terminal tail. EMBO Rep 20(10):e48913. https://doi.org/10.15252/embr.20194891

Article  CAS  PubMed  PubMed Central  Google Scholar 

Armache JP, Gamarra N, Johnson SL, Leonard JD, Wu S, Narlikar GJ, & Cheng Y (2019) Cryo-EM structures of remodeler-nucleosome intermediates suggest allosteric control through the nucleosome. Elife, 8 https://doi.org/10.7554/eLife.46057

Armeev GA, Gribkova AK, Pospelova I, Komarova GA, Shaytan AK (2019) Linking chromatin composition and structural dynamics at the nucleosome level. Curr Opin Struct Biol 56:46–55. https://doi.org/10.1016/j.sbi.2018.11.006

Article  CAS  PubMed  Google Scholar 

Asano, S., Fukuda, Y., Beck, F., Aufderheide, A., Forster, F., Danev, R., & Baumeister, W. (2015). Proteasomes. A molecular census of 26S proteasomes in intact neurons. Science, 347(6220), 439-442. https://doi.org/10.1126/science.1261197

Axel R, Melchior W Jr, Sollner-Webb B, Felsenfeld G (1974) Specific sites of interaction between histones and DNA in chromatin. Proc Natl Acad Sci U S A 71(10):4101–4105. https://doi.org/10.1073/pnas.71.10.4101

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai Y, Zhou BR (2021) Structures of native-like nucleosomes: one step closer toward understanding the structure and function of chromatin. J Mol Biol 433(6):166648. https://doi.org/10.1016/j.jmb.2020.09.007

Article  CAS  PubMed  Google Scholar 

Bauerlein FJB, Baumeister W (2021) Towards visual proteomics at high resolution. J Mol Biol 433(20):167187. https://doi.org/10.1016/j.jmb.2021.167187

Article  CAS  PubMed  Google Scholar 

Bednar J, Garcia-Saez I, Boopathi R, Cutter AR, Papai G, Reymer A, Syed SH, Lone IN, Tonchev O, Crucifix C, Menoni H, Papin C, Skoufias DA, Kurumizaka H, Lavery R, Hamiche A, Hayes JJ, Schultz P, Angelov D, Dimitrov S (2017) Structure and dynamics of a 197 bp nucleosome in complex with linker histone H1. Mol Cell, 66 3, 384–397 e388 https://doi.org/10.1016/j.molcel.2017.04.012

Bepler T, Kelley K, Noble AJ, Berger B (2020) Topaz-Denoise: general deep denoising models for cryoEM and cryoET. Nat Commun 11(1):5208. https://doi.org/10.1038/s41467-020-18952-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bharat TA, Russo CJ, Lowe J, Passmore LA, Scheres SH (2015) Advances in single-particle electron cryomicroscopy structure determination applied to sub-tomogram averaging. Structure 23(9):1743–1753. https://doi.org/10.1016/j.str.2015.06.026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bilokapic S, Strauss M, Halic M (2018) Histone octamer rearranges to adapt to DNA unwrapping. Nat Struct Mol Biol 25(1):101–108. https://doi.org/10.1038/s41594-017-0005-5

Article  CAS  PubMed  Google Scholar 

Bohm J, Frangakis AS, Hegerl R, Nickell S, Typke D, Baumeister W (2000) Toward detecting and identifying macromolecules in a cellular context: template matching applied to electron tomograms. Proc Natl Acad Sci U S A 97(26):14245–14250. https://doi.org/10.1073/pnas.230282097

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bohning J, Bharat TAM (2021) Towards high-throughput in situ structural biology using electron cryotomography. Prog Biophys Mol Biol 160:97–103. https://doi.org/10.1016/j.pbiomolbio.2020.05.010

Article  CAS  PubMed  Google Scholar 

Bowerman S, Wereszczynski J, & Luger K (2021) Archaeal chromatin ‘slinkies’ are inherently dynamic complexes with deflected DNA wrapping pathways. Elife, 10. https://doi.org/10.7554/eLife.65587

Buchholz TO, Krull A, Shahidi R, Pigino G, Jekely G, Jug F (2019) Content-aware image restoration for electron microscopy. Methods Cell Biol 152:277–289. https://doi.org/10.1016/bs.mcb.2019.05.001

Article  PubMed  Google Scholar 

Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10(12):1213–1218. https://doi.org/10.1038/nmeth.2688

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bui M, Dimitriadis EK, Hoischen C, An E, Quenet D, Giebe S, Nita-Lazar A, Diekmann S, Dalal Y (2012) Cell-cycle-dependent structural transitions in the human CENP-A nucleosome in vivo. Cell 150(2):317–326. https://doi.org/10.1016/j.cell.2012.05.035

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai S, Böck D, Pilhofer M, Gan L (2018a) The in situ structures of mono-, di-, and trinucleosomes in human heterochromatin. Mol Biol Cell 29(20):2450–2457. https://doi.org/10.1091/mbc.E18-05-0331

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai S, Song Y, Chen C, Shi J, Gan L (2018b) Natural chromatin is heterogeneous and self-associates in vitro. Mol Biol Cell 29(13):1652–1663. https://doi.org/10.1091/mbc.E17-07-0449

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai S, Chen C, Tan ZY, Huang Y, Shi J, Gan L (2018c) Cryo-ET reveals the macromolecular reorganization of S. pombe mitotic chromosomes in vivo. Proc Natl Acad Sci USA 115:10977–10982. https://doi.org/10.1073/pnas.1720476115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carone BR, Hung JH, Hainer SJ, Chou MT, Carone DM, Weng Z, Fazzio TG, Rando OJ (2014) High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm. Dev Cell 30(1):11–22. https://doi.org/10.1016/j.devcel.2014.05.024

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen M, Bell JM, Shi X, Sun SY, Wang Z, Ludtke SJ (2019) A complete data processing workflow for cryo-ET and subtomogram averaging. Nat Methods 16(11):1161–1168. https://doi.org/10.1038/s41592-019-0591-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen M, Shi X, Yu Z, Fan G, Serysheva II, Baker ML, Luisi BF, Ludtke SJ, & Wang Z (2022) In situ structure of the AcrAB-TolC efflux pump at subnanometer resolution. Structure, 30(1), 107–113 e103 https://doi.org/10.1016/j.str.2021.08.008

Chereji RV, Morozov AV (2014) Ubiquitous nucleosome crowding in the yeast genome. Proc Natl Acad Sci U S A 111(14):5236–5241. https://doi.org/10.1073/pnas.1321001111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chua EY, Vogirala VK, Inian O, Wong AS, Nordenskiold L, Plitzko JM, Danev R, Sandin S (2016) 3 9 A structure of the nucleosome core particle determined by phase-plate cryo-EM. Nucleic Acids Res 44(17):8013–8019. https://doi.org/10.1093/nar/gkw708

Article  CAS  PubMed  PubMed Central  Google Scholar 

Danev R, Buijsse B, Khoshouei M, Plitzko JM, Baumeister W (2014) Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proc Natl Acad Sci U S A 111(44):15635–15640. https://doi.org/10.1073/pnas.1418377111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1 9 a resolution. J Mol Biol 319(5):1097–1113. https://doi.org/10.1016/S0022-2836(02)00386-8

Article  CAS  PubMed  Google Scholar 

David L, Huber W, Granovskaia M, Toedling J, Palm CJ, Bofkin L, Jones T, Davis RW, Steinmetz LM (2006) A high-resolution map of transcription in the yeast genome. Proc Natl Acad Sci U S A 103(14):5320–5325. https://doi.org/10.1073/pnas.0601091103

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davie JR, Saunders CA, Walsh JM, Weber SC (1981) Histone modifications in the yeast S. Cerevisiae Nucleic Acids Res 9(13):3205–3216. https://doi.org/10.1093/nar/9.13.3205

Article  CAS  PubMed  Google Scholar 

Dendooven T, Zhang Z, Yang J, McLaughlin SH, Schwab J, Scheres SHW, Yatskevich S, & Barford D (2022) Cryo-EM structure of the complete inner kinetochore of the budding yeast point centromere. bioRxiv

Dodonova SO, Zhu F, Dienemann C, Taipale J, Cramer P (2020) Nucleosome-bound SOX2 and SOX11 structures elucidate pioneer factor function. Nature 580(7805):669–672. https://doi.org/10.1038/s41586-020-2195-y

Article  CAS  PubMed  Google Scholar 

Ehara H, Kujirai T, Shirouzu M, Kurumizaka H, & Sekine SI (2022) Structural basis of nucleosome disassembly and reassembly by RNAPII elongation complex with FACT. Science, 377(6611) eabp9466 https://doi.org/10.1126/science.abp9466

Engeholm M, de Jager M, Flaus A, Brenk R, van Noort J, Owen-Hughes T (2009) Nucleosomes can invade DNA territories occupied by their neighbors. Nat Struct Mol Biol 16(2):151–158. https://doi.org/10.1038/nsmb.1551

Article  CAS  PubMed  PubMed Central  Google Scholar 

Erdmann PS, Hou Z, Klumpe S, Khavnekar S, Beck F, Wilfling F, Plitzko JM, Baumeister W (2021) In situ cryo-electron tomography reveals gradient organization of ribosome biogenesis in intact nucleoli. Nat Commun 12(1):5364. https://doi.org/10.1038/s41467-021-25413-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farnung L, Vos SM, Wigge C, Cramer P (2017) Nucleosome-Chd1 structure and implications for chromatin remodelling. Nature 550(7677):539–542. https://doi.org/10.1038/nature24046

Article  CAS  PubMed  PubMed Central  Google Scholar 

Filipovski M, Soffers JHM, Vos SM, Farnung L (2022) Structural basis of nucleosome retention during transcription elongation. Science 376(6599):1313–1316. https://doi.org/10.1126/science.abo3851

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fukuda Y, Laugks U, Lucic V, Baumeister W, Danev R (2015) Electron cryotomography of vitrified cells with a Volta phase plate. J Struct Biol 190(2):143–154. https://doi.org/10.1016/j.jsb.2015.03.004

Article  PubMed  Google Scholar 

Fukuda Y, Beck F, Plitzko JM, Baumeister W (2017) In situ structural studies of tripeptidyl peptidase II (TPPII) reveal spatial association with proteasomes. Proc Natl Acad Sci U S A 114(17):4412–4417. https://doi.org/10.1073/pnas.1701367114

Article  CAS  PubMed 

留言 (0)

沒有登入
gif