Multi-Objective Optimization of Copper Bioleaching: Comparative Study of Pure and Co-Cultured Cultivation

1. Yévenes LV, Malverde S, Quezad V. A Sustainable Bioleaching
of a Low-Grade Chalcopyrite Ore. Minerals. 2022;12:487.
doi:10.3390/min12040487
2. Jena SS, Tripathy SK , Mandre NR ,Venugopal R, Farrokhpay
S. Sustainable Use of Copper Resources: Beneficiation of
Low-Grade Copper Ores. Minerals. 2022;12:545. doi:10.3390/
min12050545
3. Zhu J, Li Q, Jiao W, Jiang H, Sand W, Xia J, et al. Adhesion
forces between cells of Acidithiobacillus ferrooxidans,
Acidithiobacillus thiooxidans or Leptospirillum ferrooxidans
and chalcopyrite. Colloids Surf B. 2012;94:95-100. doi:10.1016
/j.colsurfb.2012.01.022
4. Schumer BN, Stegen RJ, Barton M, Hiskey JB. Mineralogical
Profile of Supergene Sulfide Ore in the Western Copper Area,
Morenci Mine, Arizona. Canad Mineral. 2019;57(3):391-401.
doi:10.3749/canmin.180002
5. Liu H, Gu G, Xu Y. Surface properties of pyrite in the course of
bioleaching by pure culture of Acidithiobacillus ferrooxidans
and a mixed culture of Acidithiobacillus ferrooxidans and
Acidithiobacillus thiooxidans. Hydrometallurgy. 2011;108(1-
2):143-148. doi:10.1016/j.hydromet.2011.03.010
6. Singh S, Sukla LB, Mishra BK. Extraction of copper from
Malanjkhand low-grade ore by Bacillus stearothermophilus.
Indian J Microbiol. 2011;51(4):477-481. doi:10.1007/s12088-
011-0073-x
7. Kamizela T, Grobelak A, Worwag M. Use of Acidithiobacillus
thiooxidans and Acidithiobacillus ferrooxidans in the Recovery
of Heavy Metals from Landfill Leachates. Energies.
2021;14(11):3336. doi:10.3390/en14113336
8. Quatrini R, Appia-Ayme C, Denis Y, Jedlicki E, Holmes DS,
Bonnefoy V. Extending the models for iron and sulfur oxidation
in the extreme acidophile Acidithiobacillus ferrooxidans. BMC
Genom. 2009;10(1):1-9. doi:10.1186/1471-2164-10-394
9. Zhang S, Yan L, Xing W, Chen P, Zhang Y, Wang W.
Acidithiobacillus ferrooxidans and its potential application.
Extremophiles. 2018;22(4):563-579. doi:10.1007/s00792-018-
1024-9
10. Feng S , Kaijun Li , Huang Z , Tong Y, Yang H. Specific
mechanism of Acidithiobacillus caldus extracellular polymeric
substances in the bioleaching of copper-bearing sulfide
ore. PLoS One. 2019;14(4):e0213945. doi:10.1371/journal.
pone.0213945
11. Chen SY, Lin PL. Optimization of operating parameters for
the metal bioleaching process of contaminated soil. Sep Purif
Technol. 2010;71(2):178-185. doi:10.1016/j.seppur.2009.11.
018
12. Hao J, Wang X, Wang Y. Optimizing the Leaching Parameters
Rakhshani Y et al.
Iran. J. Biotechnol. April 2023;21(2): e3278 37
and Studying the Kinetics of Copper Recovery from Waste
Printed Circuit Boards. ACS Omega. 2022;7(4):3689-3699.
doi:10.1021/acsomega.1c06173
13. Arshadi M, Mousavi SM. Multi-objective optimization of
heavy metals bioleaching from discarded mobile phone PCBs:
simultaneous Cu and Ni recovery using Acidithiobacillus
ferrooxidans. Sep Purif Technol. 2015;147:210-219. doi:10.
1016/j.seppur.2015.04.020
14. Naderi M, Shafaie SZ, Karamoozian M, Gharanjik S.
Optimization of parameters affecting recovery of copper from
Sarcheshmeh low-grade sulfide ore using bioleaching. JME.
2017;8(4):523-537. doi:10.22044/jme.2017.848
15. Wang G, Liu Y, Tong L, Jin Z, Chen G, Yang H. Effect of
temperature on leaching behavior of copper minerals with
different occurrence states in complex copper oxide ores. T
Nonferr Metal Soc. 2019;29(100:2192-2201. doi:10.1016/
S1003-6326(19)65125-3
16. Zheng SA, Zheng X, Chen C. Leaching behavior of heavy
metals and transformation of their speciation in polluted soil
receiving simulated acid rain. PloS One. 2012;7(11):e49664.
doi:10.1371/journal.pone.0049664
17. Noguchi H, Okibe N. The role of bioleaching microorganisms
in saline water leaching of chalcopyrite concentrate.
Hydrometallurgy. 2020;195: 105397. doi:10.1016/j.hydromet.
2020.105397
18. Ghorbani Y, Franzidis JP, Petersen J. Heap leaching technology-
current state, innovations, and future directions: a
review. Miner Process Extr Metall Rev. 2016;37(2):73-119. doi:
10.1080/08827508.2015.1115990
19. Ntakamutshi PT, Kime MB, Mwema ME, Ngenda BR, Kaniki
TA. Agitation and column leaching studies of oxidised coppercobalt
ores under reducing conditions. Miner Eng. 2017;111:47-
54. doi:10.1016/j.mineng.2017.06.001
20. Naka A, Yasutaka T, Sakanakura H, Kalbe U, Watanabe Y, Inoba
S, et al. Column percolation test for contaminated soils: Key
factors for standardization. J Hazard Mater. 2016;320:326-340.
doi:10.1016/j.jhazmat.2016.08.046
21. Gomez C, Blazquez ML, Ballester A. Bioleaching of a
Spanish complex sulphide ore bulk concentrate. Miner Eng.
1999;12(1):93-106. doi:10.1016/S0892-6875(98)00122-8
22. Peng JB, Yan WM, Bao XZ. Solid medium for the genetic
manipulation of Thiobacillus ferrooxidans. J Gen Appl
Microbiol. 1994;40(3):243-253. doi:10.2323/jgam.40.243
23. Yakimov MM, Cappello S, Crisafi E, Tursi A, Savini A, Corselli
C, et al. Phylogenetic survey of metabolically active microbial
communities associated with the deep-sea coral Lophelia
pertusa from the Apulian plateau, Central Mediterranean Sea.
Deep Sea Res Part I: Oceanogr Res Pap. 2006;53(1):62-75.
doi:10.1016/j.dsr.2005.07.005
24. Gu W, Bai J, Dai J, Zhang C, Yuan W, Wang J, et al.
characterization of extreme acidophile bacteria (Acidithiobacillus
ferrooxidans) bioleaching copper from flexible PCB by
ICP-AES. J Spectrosc. 2014;2014. doi:10.1155/2014/269351
25. Rawlings DE. Microbially-assisted dissolution of minerals and
its use in the mining industry. Pure Appl Chem. 2004;76(4):847-
859. doi:10.1351/pac200476040847
26. Kim DJ, Pradhan D, Park KH, Ahn JG, Lee SW. Effect of pH
and temperature on iron oxidation by mesophilic mixed iron
oxidizing microflora. Mater Trans. 2008;49(10):2389-2393.
doi:10.2320/matertrans.MER2008051

留言 (0)

沒有登入
gif