Urotensin II can Induce Skeletal Muscle Atrophy Associated with Upregulating Ubiquitin–Proteasome System and Inhibiting the Differentiation of Satellite Cells in CRF Mice

Wang XH, Mitch WE (2014) Mechanisms of muscle wasting in chronic kidney disease. Nat Rev Nephrol 10(9):504–516. https://doi.org/10.1038/nrneph.2014.112

Article  CAS  PubMed  PubMed Central  Google Scholar 

Changchien CY, Lin YH, Cheng YC, Chang HH, Peng YS, Chen Y (2019) Indoxyl sulfate induces myotube atrophy by ROS-ERK and JNK-MAFbx cascades. Chem Biol Interact 304:43–51. https://doi.org/10.1016/j.cbi.2019.02.023

Article  CAS  PubMed  Google Scholar 

Rom O, Reznick AZ (2016) The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med 98:218–230. https://doi.org/10.1016/j.freeradbiomed.2015.12.031

Article  CAS  PubMed  Google Scholar 

Foletta VC, White LJ, Larsen AE, Leger B, Russell AP (2011) The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch 461(3):325–335. https://doi.org/10.1007/s00424-010-0919-9

Article  CAS  PubMed  Google Scholar 

Ravani P, Tripepi G, Pecchini P, Mallamaci F, Malberti F, Zoccali C (2008) Urotensin II is an inverse predictor of death and fatal cardiovascular events in chronic kidney disease. Kidney Int 73(1):95–101. https://doi.org/10.1038/sj.ki.5002565

Article  CAS  PubMed  Google Scholar 

Pereira-Castro J, Bras-Silva C, Fontes-Sousa AP (2019) Novel insights into the role of urotensin II in cardiovascular disease. Drug Discov Today 24(11):2170–2180. https://doi.org/10.1016/j.drudis.2019.08.005

Article  CAS  PubMed  Google Scholar 

Hursitoglu M, Tukek T, Cikrikcioglu MA, Kara O, Kazancioglu R, Ozkan O et al (2012) Urotensin II levels in patients with chronic kidney disease and kidney transplants. Ups J Med Sci 117(1):22–27. https://doi.org/10.3109/03009734.2011.626541

Article  PubMed  PubMed Central  Google Scholar 

Eyre HJ, Speight T, Glazier JD, Smith DM, Ashton N (2019) Urotensin II in the development and progression of chronic kidney disease following (5/6) nephrectomy in the rat. Exp Physiol 104(3):421–433. https://doi.org/10.1113/EP087366

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdel-Razik AE, Forty EJ, Balment RJ, Ashton N (2008) Renal haemodynamic and tubular actions of urotensin II in the rat. J Endocrinol 198(3):617–624. https://doi.org/10.1677/JOE-08-0260

Article  CAS  PubMed  Google Scholar 

Diebold I, Petry A, Burger M, Hess J, Gorlach A (2011) NOX4 mediates activation of Fxo03A and matrix metalloproteinase-2 expression by urotensin-II. Mol Biol Cell 22(22):4424–4434. https://doi.org/10.1091/mbc.E10-12-0971

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X, Yu R, Sun L, Garibotto G, Lin X, Wang Y et al (2017) The nuclear phosphatase SCP4 regulates FoxO transcription factors during muscle wasting in chronic kidney disease. Kidney Int 92(2):336–348. https://doi.org/10.1016/j.kint.2017.02.031

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu L, Hu R, You H, Li J, Liu Y, Li Q et al (2021) Formononetin ameliorates muscle atrophy by regulating myostatin-mediated PI3K/Akt/Fxo03A pathway and satellite cell function in chronic kidney disease. J Cell Mol Med 25(3):1493–1506. https://doi.org/10.1111/jcmm.16238

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan YJ, Zhou SJ, Feng J, Bai Q, A LT, Zhang AH, (2019) Urotensin II Induces Mice Skeletal Muscle Atrophy Associated with Enhanced Autophagy and Inhibited Irisin Precursor (Fibronectin Type III Domain Containing 5) Expression in Chronic Renal Failure. Kidney Blood Press Res 44(4):479–495. https://doi.org/10.1159/000499880

Article  CAS  PubMed  Google Scholar 

Joung H, Eom GH, Choe N, Lee HM, Ko JH, Kwon DH et al (2014) Ret finger protein mediates Pax7-induced ubiquitination of MyoD in skeletal muscle atrophy. Cell Signal 26(10):2240–2248. https://doi.org/10.1016/j.cellsig.2014.07.006

Article  CAS  PubMed  Google Scholar 

Watanabe H, Enoki Y, Maruyama T (2019) Sarcopenia in chronic kidney disease: factors, mechanisms, and therapeutic interventions. Biol Pharm Bull 42(9):1437–1445. https://doi.org/10.1248/bpb.b19-00513

Article  CAS  PubMed  Google Scholar 

Hong Y, Lee JH, Jeong KW, Choi CS, Jun HS (2019) Amelioration of muscle wasting by glucagon-like peptide-1 receptor agonist in muscle atrophy. J Cachexia Sarcopenia Muscle 10(4):903–918. https://doi.org/10.1002/jcsm.12434

Article  PubMed  PubMed Central  Google Scholar 

Mak RH, Cheung W, Cone RD, Marks DL (2006) Leptin and inflammation-associated cachexia in chronic kidney disease. Kidney Int 69(5):794–797. https://doi.org/10.1038/sj.ki.5000182

Article  CAS  PubMed  Google Scholar 

Solagna F, Tezze C, Lindenmeyer MT, Lu S, Wu G, Liu S et al (2021) Pro-cachectic factors link experimental and human chronic kidney disease to skeletal muscle wasting programs. J Clin Invest. https://doi.org/10.1172/JCI135821

Article  PubMed  PubMed Central  Google Scholar 

Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37(10):1974–1984. https://doi.org/10.1016/j.biocel.2005.04.018

Article  CAS  PubMed  Google Scholar 

Figeac N, Serralbo O, Marcelle C, Zammit PS (2014) ErbB3 binding protein-1 (Ebp1) controls proliferation and myogenic differentiation of muscle stem cells. Dev Biol 386(1):135–151. https://doi.org/10.1016/j.ydbio.2013.11.017

Article  CAS  PubMed  Google Scholar 

Rahman MM, Ghosh M, Subramani J, Fong GH, Carlson ME, Shapiro LH (2014) CD13 regulates anchorage and differentiation of the skeletal muscle satellite stem cell population in ischemic injury. Stem Cells 32(6):1564–1577. https://doi.org/10.1002/stem.1610

Article  CAS  PubMed  Google Scholar 

Olguin HC, Olwin BB (2004) Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev Biol 275(2):375–388. https://doi.org/10.1016/j.ydbio.2004.08.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Motohashi N, Asakura A (2014) Muscle satellite cell heterogeneity and self-renewal. Front Cell Dev Biol 2:1. https://doi.org/10.3389/fcell.2014.00001

Article  PubMed  PubMed Central  Google Scholar 

Lagirand-Cantaloube J, Cornille K, Csibi A, Batonnet-Pichon S, Leibovitch MP, Leibovitch SA (2009) Inhibition of atrogin-1/MAFbx mediated MyoD proteolysis prevents skeletal muscle atrophy in vivo. PLoS ONE 4(3):e4973. https://doi.org/10.1371/journal.pone.0004973

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goncalves MD, Hwang SK, Pauli C, Murphy CJ, Cheng Z, Hopkins BD et al (2018) Fenofibrate prevents skeletal muscle loss in mice with lung cancer. Proc Natl Acad Sci U S A 115(4):E743–E752. https://doi.org/10.1073/pnas.1714703115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cedernaes J, Schonke M, Westholm JO, Mi J, Chibalin A, Voisin S et al (2018) Acute sleep loss results in tissue-specific alterations in genome-wide DNA methylation state and metabolic fuel utilization in humans. Sci Adv 4(8):r8590. https://doi.org/10.1126/sciadv.aar8590

Article  CAS  Google Scholar 

Li J, Zhao PP, Hao T, Wang D, Wang Y, Zhu YZ, Wu YQ, Zhou CH (2017) Urotensin II inhibitor eases neuropathic pain by suppressing the JNK/NF-kappaB pathway. J Endocrinol 232:165–174. https://doi.org/10.1530/JOE-16-0255

Article  CAS  PubMed  Google Scholar 

Peris-Moreno D, Taillandier D, Polge C (2020) MuRF1/TRIM63, master regulator of muscle mass. Int J Mol Sci 21(18):6663. https://doi.org/10.3390/ijms21186663

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif