Quinpirole ameliorates nigral dopaminergic neuron damage in Parkinson’s disease mouse model through activating GHS-R1a/D2R heterodimers

Tolosa E, Garrido A, Scholz SW, Poewe W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 2021;20:385–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021;397:2284–303.

Article  CAS  PubMed  Google Scholar 

Mahoney-Sánchez L, Bouchaoui H, Ayton S, Devos D, Duce JA, Devedjian JC. Ferroptosis and its potential role in the physiopathology of Parkinson’s Disease. Prog Neurobiol. 2021;196:101890.

Article  PubMed  Google Scholar 

Bi MX, Du XX, Xiao X, Dai YY, Jiao Q, Chen X, et al. Deficient immunoproteasome assembly drives gain of α-synuclein pathology in Parkinson’s disease. Redox Biol. 2021;47:102167.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science. 1996;273:974–7.

Article  CAS  PubMed  Google Scholar 

Li HZ, Shou LL, Shao XX, Li N, Liu YL, Xu ZG, et al. LEAP2 has antagonized the ghrelin receptor GHSR1a since its emergence in ancient fish. Amino Acids. 2021;53:939–49.

Article  CAS  PubMed  Google Scholar 

Shi LM, Bian XL, Qu ZQ, Ma ZG, Zhou Y, Wang KW, et al. Peptide hormone ghrelin enhances neuronal excitability by inhibition of Kv7/KCNQ channels. Nat Commun. 2013;4:1435.

Article  PubMed  Google Scholar 

Suda Y, Kuzumaki N, Sone T, Narita M, Tanaka K, Hamada Y, et al. Down-regulation of ghrelin receptors on dopaminergic neurons in the substantia nigra contributes to Parkinson’s disease-like motor dysfunction. Mol Brain. 2018;11:6.

Article  PubMed  PubMed Central  Google Scholar 

Huang HJ, Chen XR, Han QQ, Wang J, Pilot A, Yu R, et al. The protective effects of Ghrelin/GHSR on hippocampal neurogenesis in CUMS mice. Neuropharmacology. 2019;155:31–43.

Article  CAS  PubMed  Google Scholar 

Gross JD, Kim DW, Zhou Y, Jansen D, Slosky LM, Clark NB, et al. Discovery of a functionally selective ghrelin receptor (GHSR(1a)) ligand for modulating brain dopamine. Proc Natl Acad Sci USA. 2022;119:e2112397119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mear Y, Enjalbert A, Thirion S. GHS-R1a constitutive activity and its physiological relevance. Front Neurosci. 2013;7:87.

Article  PubMed  PubMed Central  Google Scholar 

Holst B, Holliday ND, Bach A, Elling CE, Cox HM, Schwartz TW. Common structural basis for constitutive activity of the ghrelin receptor family. J Biol Chem. 2004;279:53806–17.

Article  CAS  PubMed  Google Scholar 

Damian M, Marie J, Leyris JP, Fehrentz JA, Verdié P, Martinez J, et al. High constitutive activity is an intrinsic feature of ghrelin receptor protein: a study with a functional monomeric GHS-R1a receptor reconstituted in lipid discs. J Biol Chem. 2012;287:3630–41.

Article  CAS  PubMed  Google Scholar 

Rouault AAJ, Rosselli-Murai LK, Hernandez CC, Gimenez LE, Tall GG, Sebag JA, The GPCR accessory protein MRAP2 regulates both biased signaling and constitutive activity of the ghrelin receptor GHSR1a. Sci Signal. 2020;13:eaax4569.

Xiao X, Bi MX, Jiao Q, Chen X, Du XX, Jiang H. A new understanding of GHSR1a–independent of ghrelin activation. Ageing Res Rev. 2020;64:101187.

Article  CAS  PubMed  Google Scholar 

Rediger A, Tarnow P, Bickenbach A, Schaefer M, Krude H, Gruters A, et al. Heterodimerization of hypothalamic G-protein-coupled receptors involved in weight regulation. Obes Facts. 2009;2:80–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Girardet C, Mavrikaki M, Southern MR, Smith RG, Butler AA. Assessing interactions between Ghsr and Mc3r reveals a role for AgRP in the expression of food anticipatory activity in male mice. Endocrinology. 2014;155:4843–55.

Article  PubMed  PubMed Central  Google Scholar 

Schellekens H, van Oeffelen WE, Dinan TG, Cryan JF. Promiscuous dimerization of the growth hormone secretagogue receptor (GHS-R1a) attenuates ghrelin-mediated signaling. J Biol Chem. 2013;288:181–91.

Article  CAS  PubMed  Google Scholar 

Schellekens H, De Francesco PN, Kandil D, Theeuwes WF, McCarthy T, van Oeffelen WE, et al. Ghrelin’s orexigenic effect is modulated via a serotonin 2C receptor interaction. ACS Chem Neurosci. 2015;6:1186–97.

Article  CAS  PubMed  Google Scholar 

Xue QJ, Bai B, Ji BY, Chen XY, Wang CM, Wang PX, et al. Ghrelin through GHSR1a and OX1R heterodimers reveals a galphas-cAMP-cAMP response element binding protein signaling pathway in vitro. Front Mol Neurosci. 2018;11:245.

Article  PubMed  PubMed Central  Google Scholar 

Suarez AN, Liu CM, Cortella AM, Noble EE, Kanoski SE. Ghrelin and orexin interact to increase meal size through a descending hippocampus to hindbrain signaling pathway. Biol Psychiatry. 2020;87:1001–11.

Article  CAS  PubMed  Google Scholar 

Müller TD, Müller A, Yi CX, Habegger KM, Meyer CW, Gaylinn BD, et al. The orphan receptor Gpr83 regulates systemic energy metabolism via ghrelin-dependent and ghrelin-independent mechanisms. Nat Commun. 2013;4:1968.

Article  PubMed  Google Scholar 

Kern A, Mavrikaki M, Ullrich C, Albarran-Zeckler R, Brantley AF, Smith RG. Hippocampal dopamine/DRD1 signaling dependent on the ghrelin receptor. Cell. 2015;163:1176–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bunzow JR, Van Tol HH, Grandy DK, Albert P, Salon J, Christie M, et al. Cloning and expression of a rat D2 dopamine receptor cDNA. Nature. 1988;336:783–7.

Article  CAS  PubMed  Google Scholar 

Xiao P, Yan W, Gou L, Zhong YN, Kong L, Wu C, et al. Ligand recognition and allosteric regulation of DRD1-Gs signaling complexes. Cell. 2021;184:943–56.e18.

Article  CAS  PubMed  Google Scholar 

Monti JM, Monti D. The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev. 2007;11:113–33.

Article  PubMed  Google Scholar 

Bello EP, Casas-Cordero R, Galinanes GL, Casey E, Belluscio MA, Rodriguez V, et al. Inducible ablation of dopamine D2 receptors in adult mice impairs locomotion, motor skill learning and leads to severe parkinsonism. Mol Psychiatry. 2017;22:595–604.

Article  CAS  PubMed  Google Scholar 

Kobayashi M, Iaccarino C, Saiardi A, Heidt V, Bozzi Y, Picetti R, et al. Simultaneous absence of dopamine D1 and D2 receptor-mediated signaling is lethal in mice. Proc Natl Acad Sci USA. 2004;101:11465–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carlezon WA Jr., Duman RS, Nestler EJ. The many faces of CREB. Trends Neurosci. 2005;28:436–45.

Article  CAS  PubMed  Google Scholar 

Kim KS, Lee MK, Carroll J, Joh TH. Both the basal and inducible transcription of the tyrosine hydroxylase gene are dependent upon a cAMP response element. J Biol Chem. 1993;268:15689–95.

Article  CAS  PubMed  Google Scholar 

Sakamoto KM, Frank DA. CREB in the pathophysiology of cancer: implications for targeting transcription factors for cancer therapy. Clin Cancer Res. 2009;15:2583–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang H, Xu J, Lazarovici P, Quirion R, Zheng W. cAMP response element-binding protein (CREB): a possible signaling molecule link in the pathophysiology of schizophrenia. Front Mol Neurosci. 2018;11:255.

Article  PubMed  PubMed Central  Google Scholar 

Lane-Ladd SB, Pineda J, Boundy VA, Pfeuffer T, Krupinski J, Aghajanian GK, et al. CREB (cAMP response element-binding protein) in the locus coeruleus: biochemical, physiological, and behavioral evidence for a role in opiate dependence. J Neurosci. 1997;17:7890–901.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giachino C, De Marchis S, Giampietro C, Parlato R, Perroteau I, Schütz G, et al. cAMP response element-binding protein regulates differentiation and survival of newborn neurons in the olfactory bulb. J Neurosci. 2005;25:10105–18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ao H, Ko SW, Zhuo M. CREB activity maintains the survival of cingulate cortical pyramidal neurons in the adult mouse brain. Mol Pain. 2006;2:15.

Article  PubMed  PubMed Central  Google Scholar 

Elstner M, Morris CM, Heim K, Bender A, Mehta D, Jaros E, et al. Expression analysis of dopaminergic neurons in Parkinson’s disease and aging links transcriptional dysregulation of energy metabolism to cell death. Acta Neuropathol. 2011;122:75–86.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif