Advancement in CRISPR/Cas9 Technology to Better Understand and Treat Neurological Disorders

Ababneh NA, Scaber J, Flynn R, Douglas A, Barbagallo P, Candalija A, Turner MR, Sims D, Dafinca R, Cowley SA (2020) Correction of amyotrophic lateral sclerosis related phenotypes in induced pluripotent stem cell-derived motor neurons carrying a hexanucleotide expansion mutation in C9orf72 by CRISPR/Cas9 genome editing using homology-directed repair. Hum Mol Genet 29(13):2200–2217

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altae-Tran H, Kannan S, Demircioglu FE, Oshiro R, Nety SP, McKay LJ, Dlakić M, Inskeep WP, Makarova KS, Macrae RK, Koonin EV, Zhang F (2021) The widespread IS200/605 transposon family encodes diverse programmable RNA-guided endonucleases. Science. https://doi.org/10.1126/science.abj6856

Article  PubMed  PubMed Central  Google Scholar 

Amoasii L, Long C, Li H, Mireault AA, Shelton JM, Sanchez-Ortiz E, McAnally JR, Bhattacharyya S, Schmidt F, Grimm D, Hauschka SD, Bassel-Duby R, Olson EN (2017) Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aan8081

Article  PubMed  PubMed Central  Google Scholar 

Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149–157

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anzalone AV, Koblan LW, Liu DR (2020) Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38(7):824–844

Article  CAS  PubMed  Google Scholar 

Bailus BJ, Pyles B, McAlister MM, O’Geen H, Lockwood SH, Adams AN, Nguyen JT, Yu A, Berman RF, Segal DJ (2016) Protein delivery of an artificial transcription factor restores widespread Ube3a expression in an Angelman Syndrome mouse brain. Mol Therapy 24(3):548–555. https://doi.org/10.1038/mt.2015.236

Article  CAS  Google Scholar 

Batra R, Nelles DA, Pirie E, Blue SM, Marina RJ, Wang H, Chaim IA, Thomas JD, Zhang N, Nguyen V, Aigner S, Markmiller S, Xia G, Corbett KD, Swanson MS, Yeo GW (2017) Elimination of toxic microsatellite repeat expansion RNA by RNA-targeting Cas9. Cell 170(5):899–912. https://doi.org/10.1016/j.cell.2017.07.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blankenship K, Erickson CA, Stigler KA, Posey DJ, McDougle CJ (2010) Aripiprazole for irritability associated with autistic disorder in children and adolescents aged 6–17 years. Paediatr Child Health 4(4):375–381

CAS  Google Scholar 

Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33(1):41–52. https://doi.org/10.1016/j.biotechadv.2014.12.006

Article  CAS  PubMed  Google Scholar 

Brandt L, Bschor T, Henssler J, Muller M, Hasan A, Heinz A, Gutwinski S (2020) Antipsychotic withdrawal symptoms: a systematic review and meta-analysis. Front Psychiatry 11:569912. https://doi.org/10.3389/fpsyt.2020.569912

Article  PubMed  PubMed Central  Google Scholar 

Cai Y, Cheng T, Yao Y, Li X, Ma Y, Li L, Zhao H, Bao J, Zhang M, Qiu Z, Xue T (2019) In vivo genome editing rescues photoreceptor degeneration via a Cas9/RecA-mediated homology-directed repair pathway. Sci Adv. https://doi.org/10.1126/sciadv.aav3335

Article  PubMed  PubMed Central  Google Scholar 

Calsolaro V, Antognoli R, Okoye C, Monzani F (2019) The use of antipsychotic drugs for treating behavioral symptoms in Alzheimer’s disease. Front Pharmacol 10:1465

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chamberlain K, Riyad JM, Weber T (2016) Expressing transgenes that exceed the packaging capacity of adeno-associated virus capsids. Hum Gene Ther Methods 27(1):1–12

Article  CAS  PubMed  PubMed Central  Google Scholar 

Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, Vakulskas CA, Collingwood MA, Zhang L, Bode NM, Behlke MA, Dejene B, Cieniewicz B, Romano R, Lesch BJ, Gomez-Ospina N, Mantri S, Pavel-Dinu M, Weinberg KI, Porteus MH (2019) Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 25(2):249–254. https://doi.org/10.1038/s41591-018-0326-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X, Pan W (2014) The treatment strategies for neurodegenerative diseases by integrative medicine. J Integr Med 1(4):223–225

Google Scholar 

Chen H, Choi J, Bailey S (2014) Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease. J Biol Chem 289(19):13284–13294. https://doi.org/10.1074/jbc.M113.539726

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chylinski K, Makarova KS, Charpentier E, Koonin EV (2014) Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 42(10):6091–6105. https://doi.org/10.1093/nar/gku241

Article  CAS  PubMed  PubMed Central  Google Scholar 

Colasante G, Qiu Y, Massimino L, Di Berardino C, Cornford JH, Snowball A, Weston M, Jones SP, Giannelli S, Lieb A, Schorge S, Kullmann DM, Broccoli V, Lignani G (2020) In vivo CRISPRa decreases seizures and rescues cognitive deficits in a rodent model of epilepsy. Brain 143(3):891–905. https://doi.org/10.1093/brain/awaa045

Article  PubMed  PubMed Central  Google Scholar 

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA (2013) Multiplex genome engineering using CRISPR/Cas systems. J Sci 339(6121):819–823

CAS  Google Scholar 

Cui J, Rothstein M, Bennett T, Zhang P, Xia N, Reijo Pera RA (2016) Quantification of dopaminergic neuron differentiation and neurotoxicity via a genetic reporter. Sci Rep 6(1):25181. https://doi.org/10.1038/srep25181

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dabrowska M, Olejniczak M (2020) Gene therapy for Huntington’s disease using targeted endonucleases. In: Trinucleotide repeats. Springer, pp 269–284

di Domenico A, Carola G, Calatayud C, Pons-Espinal M, Munoz JP, Richaud-Patin Y, Fernandez-Carasa I, Gut M, Faella A, Parameswaran J, Soriano J, Ferrer I, Tolosa E, Zorzano A, Cuervo AM, Raya A, Consiglio A (2019) Patient-specific iPSC-derived astrocytes contribute to non-cell-autonomous neurodegeneration in Parkinson’s disease. Stem Cell Rep 12(2):213–229. https://doi.org/10.1016/j.stemcr.2018.12.011

Article  CAS  Google Scholar 

Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. https://doi.org/10.1126/science.1258096

Article  CAS  PubMed  Google Scholar 

Duan W, Guo M, Yi L, Liu Y, Li Z, Ma Y, Zhang G, Liu Y, Bu H, Song X, Li C (2020) The deletion of mutant SOD1 via CRISPR/Cas9/sgRNA prolongs survival in an amyotrophic lateral sclerosis mouse model. Gene Ther 27(3–4):157–169. https://doi.org/10.1038/s41434-019-0116-1

Article  CAS  PubMed  Google Scholar 

Duarte F, Deglon N (2020) Genome editing for CNS disorders. Front Neurosci. https://doi.org/10.3389/fnins.2020.579062

Article  PubMed  PubMed Central  Google Scholar 

Ekman FK, Ojala DS, Adil MM, Lopez PA, Schaffer DV, Gaj T (2019) CRISPR-Cas9-mediated genome editing increases lifespan and improves motor deficits in a Huntington’s disease mouse model. Mol Ther Nucleic Acids 17:829–839

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feigin VL, Vos T (2019) Global burden of neurological disorders: from global burden of disease estimates to actions. Neuroepidemiology 52(1–2):1–2. https://doi.org/10.1159/000495197

Article  PubMed  Google Scholar 

Ferrari S, Di Iorio E, Barbaro V, Ponzin D, Sorrentino FS, Parmeggiani F (2011) Retinitis pigmentosa: genes and disease mechanisms. Curr Genomics 12(4):238–249. https://doi.org/10.2174/138920211795860107

Article  CAS  PubMed  PubMed Central  Google Scholar 

Figley SA, Liu Y, Karadimas SK, Satkunendrarajah K, Fettes P, Spratt SK, Lee G, Ando D, Surosky R, Giedlin M, Fehlings MG (2014) Delayed administration of a bio-engineered zinc-finger VEGF-A gene therapy is neuroprotective and attenuates allodynia following traumatic spinal cord injury. PLoS ONE 9(5):e96137. https://doi.org/10.1371/journal.pone.0096137

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaj T, Ojala DS, Ekman FK, Byrne LC, Limsirichai P, Schaffer DV (2017) In vivo genome editing improves motor function and extends survival in a mouse model of ALS. Sci Adv. https://doi.org/10.1126/sciadv.aar3952

Article  PubMed  PubMed Central  Google Scholar 

Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159(3):647–661. https://doi.org/10.1016/j.cell.2014.09.029

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ginestal-López RC (2018) Immunotherapy for neurological diseases, present and future. Farm 42(6):251–260

Google Scholar 

György B, Lööv C, Zaborowski MP, Takeda S, Kleinstiver BP, Commins C, Kastanenka K, Mu D, Volak A, Giedraitis V (2018) CRISPR/Cas9 mediated disruption of the Swedish APP allele as a therapeutic approach for early-onset Alzheimer’s disease. Mol Ther Nucleic Acids 11:429–440

Article  PubMed  PubMed Central  Google Scholar 

Haenfler JM, Skariah G, Rodriguez CM, Monteiro da Rocha A, Parent JM, Smith GD, Todd PK (2018) Targeted reactivation of FMR1 transcription in fragile X syndrome embryonic stem cells. Front Mol Neurosci 11:282. https://doi.org/10.3389/fnmol.2018.00282

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heidenreich M, Zhang F (2016) Applications of CRISPR–Cas systems in neuroscience. Nat Rev Neurosci 17(1):36–44

留言 (0)

沒有登入
gif