TRPM2 Channel Inhibition Attenuates Amyloid β42-Induced Apoptosis and Oxidative Stress in the Hippocampus of Mice

Abe K, Misawa M (2003) Amyloid beta protein enhances the clearance of extracellular L-glutamate by cultured rat cortical astrocytes. Neurosci Res 45(1):25–31. https://doi.org/10.1016/s0168-0102(02)00190-6

Article  CAS  PubMed  Google Scholar 

Abuarab N, Munsey TS, Jiang LH, Li J, Sivaprasadarao A (2017) High glucose-induced ROS activates TRPM2 to trigger lysosomal membrane permeabilization and Zn2+-mediated mitochondrial fission. Sci Signal 10(490):eaal4161. https://doi.org/10.1126/scisignal.aal4161

Article  CAS  PubMed  Google Scholar 

Ai J, Wang H, Chu P, Shopit A, Niu M, Ahmad N et al (2021) The neuroprotective effects of phosphocreatine on Amyloid Beta 25–35-induced differentiated neuronal cell death through inhibition of AKT /GSK-3β /Tau/APP /CDK5 pathways in vivo and vitro. Free Radic Biol Med 162:181–190. https://doi.org/10.1016/j.freeradbiomed.2020.10.003

Article  CAS  PubMed  Google Scholar 

Akpınar O, Özşimşek A, Güzel M, Nazıroğlu M (2020) Clostridium botulinum neurotoxin A induces apoptosis and mitochondrial oxidative stress via activation of TRPM2 channel signaling pathway in neuroblastoma and glioblastoma tumor cells. J Recept Signal Transduct Res 40(6):620–632. https://doi.org/10.1080/10799893.2020.1781174

Article  CAS  PubMed  Google Scholar 

Aksenov MY, Tucker HM, Nair P, Aksenova MV, Butterfield DA, Estus S, Markesbery WR (1998) The expression of key oxidative stress-handling genes in different brain regions in Alzheimer’s disease. J Mol Neurosci 11(2):151–164. https://doi.org/10.1385/JMN:11:2:151

Article  CAS  PubMed  Google Scholar 

Aliev G, Smith MA, de la Torre JC, Perry G (2004) Mitochondria as a primary target for vascular hypoperfusion and oxidative stress in Alzheimer’s disease. Mitochondrion 4(5–6):649–663. https://doi.org/10.1016/j.mito.2004.07.018

Article  CAS  PubMed  Google Scholar 

Armağan HH, Nazıroğlu M (2021) Glutathione depletion induces oxidative injury and apoptosis via TRPM2 channel activation in renal collecting duct cells. Chem Biol Interact 334:109306. https://doi.org/10.1016/j.cbi.2020.109306

Article  CAS  PubMed  Google Scholar 

Balaban H, Nazıroğlu M, Demirci K, Övey İS (2017) The protective role of selenium on scopolamine-induced memory impairment, oxidative stress, and apoptosis in aged rats: the involvement of TRPM2 and TRPV1 channels. Mol Neurobiol 54(4):2852–2868. https://doi.org/10.1007/s12035-016-9835-0

Article  CAS  PubMed  Google Scholar 

Charisis S, Ntanasi E, Yannakoulia M, Anastasiou CA, Kosmidis MH, Dardiotis E et al (2021) Plasma GSH levels and Alzheimer’s disease. A prospective approach.: results from the HELIAD study. Free Radic Biol Med 162:274–282. https://doi.org/10.1016/j.freeradbiomed.2020.10.027

Article  CAS  PubMed  Google Scholar 

Düzova H, Nazıroğlu M, Çiğ B, Gürbüz P, Akatlı AN (2021) Noopept attenuates diabetes-mediated neuropathic pain and oxidative hippocampal neurotoxicity via inhibition of TRPV1 channel in rats. Mol Neurobiol 58(10):5031–5051. https://doi.org/10.1007/s12035-021-02478-8

Article  CAS  PubMed  Google Scholar 

Ertilav K (2019) Pregabalin protected cisplatin-induced oxidative neurotoxicity in neuronal cell line. J Cell Neurosci Oxid Stress 11(1):815–824

Article  Google Scholar 

Fonfria E, Marshall IC, Benham CD, Boyfield I, Brown JD, Hill K, Hughes JP, Skaper SD, McNulty S (2004) TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol 143(1):186–192. https://doi.org/10.1038/sj.bjp.0705914

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fonfria E, Marshall IC, Boyfield I et al (2005) Amyloid beta-peptide(1–42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J Neurochem 95(3):715–723. https://doi.org/10.1111/j.1471-4159.2005.03396.x

Article  CAS  PubMed  Google Scholar 

Güzel M, Nazıroğlu M, Akpınar O, Çınar R (2021) Interferon gamma-mediated oxidative stress induces apoptosis, neuroinflammation, zinc ion influx, and TRPM2 channel activation in neuronal cell line: modulator role of curcumin. Inflammation 44(5):1878–1894. https://doi.org/10.1007/s10753-021-01465-4

Article  CAS  PubMed  Google Scholar 

Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658. https://doi.org/10.1111/j.1471-4159.2006.03907.x

Article  CAS  PubMed  Google Scholar 

Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T et al (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9(1):163–173. https://doi.org/10.1016/S1097-2765(01)00438-5

Article  CAS  PubMed  Google Scholar 

Hong DK, Kho AR, Lee SH, Jeong JH, Kang BS, Kang DH et al (2020) Transient receptor potential melastatin 2 (TRPM2) inhibition by antioxidant, N-acetyl-l-cysteine, reduces global cerebral ischemia-induced neuronal death. Int J Mol Sci 21(17):6026. https://doi.org/10.3390/ijms21176026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Isopi E, Granzotto A, Corona C, Bomba M, Ciavardelli D, Curcio M et al (2015) Pyruvate prevents the development of age-dependent cognitive deficits in a mouse model of Alzheimer’s disease without reducing amyloid and tau pathology. Neurobiol Dis 81:214–224. https://doi.org/10.1016/j.nbd.2014.11.013

Article  CAS  PubMed  Google Scholar 

Jiang LH, Li X, Syed Mortadza SA, Lovatt M, Yang W (2018) The TRPM2 channel nexus from oxidative damage to Alzheimer’s pathologies: an emerging novel intervention target for age-related dementia. Ageing Res Rev 47:67–79. https://doi.org/10.1016/j.arr.2018.07.002

Article  CAS  PubMed  Google Scholar 

Joshi DC, Bakowska JC (2011) Determination of mitochondrial membrane potential and reactive oxygen species in live rat cortical neurons. J vis Exp. https://doi.org/10.3791/2704

Article  PubMed  PubMed Central  Google Scholar 

Keil VC, Funke F, Zeug A, Schild D, Müller M (2011) Ratiometric high-resolution imaging of JC-1 fluorescence reveals the subcellular heterogeneity of astrocytic mitochondria. Pflugers Arch 462:693–708. https://doi.org/10.1007/s00424-011-1012-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25(1):59–70. https://doi.org/10.1111/ene.13439

Article  CAS  PubMed  Google Scholar 

Lee SR (2018) Critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxid Med Cell Longev 2018:9156285. https://doi.org/10.1155/2018/9156285

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Jiang LH (2018) Multiple molecular mechanisms form a positive feedback loop driving amyloid β42 peptide-induced neurotoxicity via activation of the TRPM2 channel in hippocampal neurons. Cell Death Dis 9(2):195. https://doi.org/10.1038/s41419-018-0270-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lipski J, Park TI, Li D, Lee SC, Trevarton AJ, Chung KK, Freestone PS, Bai JZ (2006) Involvement of TRP-like channels in the acute ischemic response of hippocampal CA1 neurons in brain slices. Brain Res 1077(1):187–199. https://doi.org/10.1016/j.brainres.2006.01.016

Article  CAS  PubMed  Google Scholar 

Maezawa I, Zou B, Di Lucente J, Cao WS, Pascual C, Weerasekara S, Zhang M, Xie XS, Hua DH, Jin LW (2017) The Anti-Amyloid-β and neuroprotective properties of a novel tricyclic pyrone molecule. J Alzheimers Dis 58(2):559–574. https://doi.org/10.3233/JAD-161175

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marí M, de Gregorio E, de Dios C, Roca-Agujetas V, Cucarull B, Tutusaus A, Morales A, Colell A (2020) Mitochondrial glutathione: recent insights and role in disease. Antioxidants 9(10):909. https://doi.org/10.3390/antiox9100909

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marreiro DD, Cruz KJ, Morais JB, Beserra JB, Severo JS, de Oliveira AR (2017) Zinc and oxidative stress: current mechanisms. Antioxidants 6(2):24. https://doi.org/10.3390/antiox6020024

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6(3):337–350. https://doi.org/10.1111/j.1474-9726.2007.00275.x

Article  CAS  PubMed  Google Scholar 

Medvedeva YV, Lin B, Shuttleworth CW, Weiss JH (2009) Intracellular Zn2+ accumulation contributes to synaptic failure, mitochondrial depolarization, and cell death in an acute slice oxygen-glucose deprivation model of ischemia. J Neurosci 29(4):1105–1114. https://doi.org/10.1523/JNEUROSCI.4604-08.2009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mei ZZ, Mao HJ, Jiang LH (2006) Conserved cysteine residues in the pore region are obligatory for human TRPM2 channel function. Am J Physiol Cell Physiol 291(5):C1022-1028. https://doi.org/10.1152/ajpcell.00606.2005

Article  CAS  PubMed  Google Scholar 

Meng X, Fu M, Wang S, Chen W, Wang J, Zhang N (2021) Naringin ameliorates memory deficits and exerts neuroprotective effects in a mouse model of Alzheimer’s disease by regulating multiple metabolic pathways. Mol Med Rep 23(5):332. https://doi.org/10.3892/mmr.2021.11971

Article  CAS  PubMed  PubMed Central  Google Scholar 

Misrani A, Tabassum S, Yang L (2021) Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front Aging Neurosci 13:617588. https://doi.org/10.3389/fnagi.2021.617588

Article  CAS 

留言 (0)

沒有登入
gif