miRNA Therapy in Laboratory Models of Acute Spinal Cord Injury in Rodents: A Meta-analysis

Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205. https://doi.org/10.1146/annurev.cellbio.23.090506.123406

Article  CAS  PubMed  Google Scholar 

Dai J, Xu LJ, Han GD, Sun HL, Zhu GT, Jiang HT, Yu GY, Tang XM (2018) MicroRNA-125b promotes the regeneration and repair of spinal cord injury through regulation of JAK/STAT pathway. Eur Rev Med Pharmacol Sci 22(3):582–589. https://doi.org/10.26355/eurrev_201802_14271

Article  CAS  PubMed  Google Scholar 

Eldahan KC, Rabchevsky AG (2018) Autonomic dysreflexia after spinal cord injury: systemic pathophysiology and methods of management. Auton Neurosci 209:59–70. https://doi.org/10.1016/j.autneu.2017.05.002

Article  PubMed  Google Scholar 

He QQ, Xiong LL, Liu F, He X, Feng GY, Shang FF, Xia QJ, Wang YC, Qiu DL, Luo CZ, Liu J, Wang TH (2016) MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth, induces cell apoptosis and contributes to physiological dysfunction after spinal cord transection. Sci Rep 6:35205. https://doi.org/10.1038/srep35205

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hede K (2013) Emergency medicine: the need for speed. Nature 503(7475):S14-15. https://doi.org/10.1038/503S14a

Article  CAS  PubMed  Google Scholar 

Hu Y, Liu Q, Zhang M, Yan Y, Yu H, Ge L (2019) MicroRNA-362-3p attenuates motor deficit following spinal cord injury via targeting paired box gene 2. J Integr Neurosci 18(1):57–64. https://doi.org/10.31083/j.jin.2019.01.12

Article  PubMed  Google Scholar 

Huang X, Gu YK, Cheng XY, Su ZD (2017) Astrocytes as therapeutic targets after spinal cord injury. Sheng Li Xue Bao 69(6):794–804

PubMed  Google Scholar 

Huang JH, Xu Y, Yin XM, Lin FY (2020) Exosomes derived from miR-126-modified MSCs promote angiogenesis and neurogenesis and attenuate apoptosis after spinal cord injury in rats. Neuroscience 424:133–145. https://doi.org/10.1016/j.neuroscience.2019.10.043

Article  CAS  PubMed  Google Scholar 

Jee MK, Jung JS, Choi JI, Jang JA, Kang KS, Im YB, Kang SK (2012) MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury. Brain 135(Pt 4):1237–1252. https://doi.org/10.1093/brain/aws047

Article  PubMed  Google Scholar 

Jiang D, Gong F, Ge X, Lv C, Huang C, Feng S, Zhou Z, Rong Y, Wang J, Ji C, Chen J, Zhao W, Fan J, Liu W, Cai W (2020) Neuron-derived exosomes-transmitted miR-124-3p protect traumatically injured spinal cord by suppressing the activation of neurotoxic microglia and astrocytes. J Nanobiotechnology 18(1):105. https://doi.org/10.1186/s12951-020-00665-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koda M, Nishio Y, Kamada T, Someya Y, Okawa A, Mori C, Yoshinaga K, Okada S, Moriya H, Yamazaki M (2007) Granulocyte colony-stimulating factor (G-CSF) mobilizes bone marrow-derived cells into injured spinal cord and promotes functional recovery after compression-induced spinal cord injury in mice. Brain Res 1149:223–231. https://doi.org/10.1016/j.brainres.2007.02.058

Article  CAS  PubMed  Google Scholar 

Kumar B, Pandey M, Fayaz F, Izneid TA, Pottoo FH, Manchanda S, Sharma A, Sahoo PK (2020) Applications of exosomes in targeted drug delivery for the treatment of Parkinson’s disease: a review of recent advances and clinical challenges. Curr Top Med Chem 20(30):2777–2788. https://doi.org/10.2174/1568026620666201019112557

Article  CAS  PubMed  Google Scholar 

Li R, Yin F, Guo Y, Ruan Q, Zhu Q (2018) Angelica polysaccharide protects PC-12 cells from lipopolysaccharide-induced injury via down-regulating microRNA-223. Biomed Pharmacother 108:1320–1327. https://doi.org/10.1016/j.biopha.2018.09.147

Article  CAS  PubMed  Google Scholar 

Li R, Bao L, Hu W, Liang H, Dang X (2019a) Expression of miR-210 mediated by adeno-associated virus performed neuroprotective effects on a rat model of acute spinal cord injury. Tissue Cell 57:22–33. https://doi.org/10.1016/j.tice.2019.02.004

Article  CAS  PubMed  Google Scholar 

Li XZ, Lv CL, Shi JG, Zhang CX (2019b) MiR-543-3p promotes locomotor function recovery after spinal cord injury by inhibiting the expression of tumor necrosis factor superfamily member 15 in rats. Eur Rev Med Pharmacol Sci 23(7):2701–2709. https://doi.org/10.26355/eurrev_201904_17540

Article  PubMed  Google Scholar 

Li C, Li X, Zhao B, Wang C (2020) Exosomes derived from miR-544-modified mesenchymal stem cells promote recovery after spinal cord injury. Arch Physiol Biochem 126(4):369–375. https://doi.org/10.1080/13813455.2019.1691601

Article  CAS  PubMed  Google Scholar 

Liu D, Huang Y, Jia C, Li Y, Liang F, Fu Q (2015) Administration of antagomir-223 inhibits apoptosis, promotes angiogenesis and functional recovery in rats with spinal cord injury. Cell Mol Neurobiol 35(4):483–491. https://doi.org/10.1007/s10571-014-0142-x

Article  CAS  PubMed  Google Scholar 

Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141(4):1202–1207. https://doi.org/10.1016/j.jaci.2017.08.034

Article  CAS  PubMed  Google Scholar 

Mohr AM, Mott JL (2015) Overview of microRNA biology. Semin Liver Dis 35(1):3–11. https://doi.org/10.1055/s-0034-1397344

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nieto-Diaz M, Esteban FJ, Reigada D, Muñoz-Galdeano T, Yunta M, Caballero-López M, Navarro-Ruiz R, Del Águila A, Maza RM (2014) MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics. Front Cell Neurosci 8:53. https://doi.org/10.3389/fncel.2014.00053

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ning SL, Zhu H, Shao J, Liu YC, Lan J, Miao J (2019) MiR-21 inhibitor improves locomotor function recovery by inhibiting IL-6R/JAK-STAT pathway-mediated inflammation after spinal cord injury in model of rat. Eur Rev Med Pharmacol Sci 23(2):433–440. https://doi.org/10.26355/eurrev_201901_16852

Article  PubMed  Google Scholar 

Park ES, Ahn JM, Jeon SM, Cho HJ, Chung KM, Cho JY, Youn DH (2017) Proteomic analysis of the dorsal spinal cord in the mouse model of spared nerve injury-induced neuropathic pain. J Biomed Res 31(6):494–502. https://doi.org/10.7555/jbr.31.20160122

Article  PubMed  PubMed Central  Google Scholar 

Qi L, Jiang-Hua M, Ge-Liang H, Qing C, Ya-Ming L (2019) MiR-34a inhibits spinal cord injury and blocks spinal cord neuron apoptosis by activating phatidylinositol 3-kinase (PI3K)/AKT pathway through targeting CD47. Curr Neurovasc Res 16(4):373–381. https://doi.org/10.2174/1567202616666190906102343

Article  CAS  PubMed  Google Scholar 

Rodrigues LF, Moura-Neto V, Spohr TCLS (2018) Biomarkers in spinal cord injury: from prognosis to treatment. Mol Neurobiol 55(8):6436–6448. https://doi.org/10.1007/s12035-017-0858-y

Article  CAS  PubMed  Google Scholar 

Shi Z, Zhou H, Lu L, Li X, Fu Z, Liu J, Kang Y, Wei Z, Pan B, Liu L, Kong X, Feng S (2017) The roles of microRNAs in spinal cord injury. Int J Neurosci 127(12):1104–1115. https://doi.org/10.1080/00207454.2017.1323208

Article  CAS  PubMed  Google Scholar 

Song JL, Zheng W, Chen W, Qian Y, Ouyang YM, Fan CY (2017) Lentivirus-mediated microRNA-124 gene-modified bone marrow mesenchymal stem cell transplantation promotes the repair of spinal cord injury in rats. Exp Mol Med 49(5):e332. https://doi.org/10.1038/emm.2017.48

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun P, Liu DZ, Jickling GC, Sharp FR, Yin KJ (2018) MicroRNA-based therapeutics in central nervous system injuries. J Cereb Blood Flow Metab 38(7):1125–1148. https://doi.org/10.1177/0271678x18773871

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tao B, Shi K (2016) Decreased miR-195 expression protects rats from spinal cord injury primarily by targeting HIF-1α. Ann Clin Lab Sci 46(1):49–53

CAS  PubMed  Google Scholar 

Theis T, Yoo M, Park CS, Chen J, Kügler S, Gibbs KM, Schachner M (2017) Lentiviral delivery of miR-133b improves functional recovery after spinal cord injury in mice. Mol Neurobiol 54(6):4659–4671. https://doi.org/10.1007/s12035-016-0007-z

Article  CAS  PubMed  Google Scholar 

Wan G, An Y, Tao J, Wang Y, Zhou Q, Yang R, Liang Q (2020) MicroRNA-129-5p alleviates spinal cord injury in mice via suppressing the apoptosis and inflammatory response through HMGB1/TLR4/NF-κB pathway. Biosci Rep 40(3):BSR20193315. https://doi.org/10.1042/bsr20193315

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Sun JC, Wang HB, Xu XM, Yang Y, Kong QJ, Shi JG (2018) Effects of MicroRNA-494 on astrocyte proliferation and synaptic remodeling in the spinal cord of a rat model of chronic compressive spinal cord injury by regulating the Nogo/Ngr signaling pathway. Cell Physiol Biochem 48(3):919–933. https://doi.org/10.1159/000491959

Article  CAS  PubMed  Google Scholar 

Wang B, Shen PF, Qu YX, Zheng C, Xu JD, Xie ZK, Cao XJ (2019) miR-940 promotes spinal cord injury recovery by inhibiting TLR4/NF-κB pathway-mediated inflammation. Eur Rev Med Pharmacol Sci 23(8):3190–3197. https://doi.org/10.26355/eurrev_201904_17677

Article  CAS  PubMed  Google Scholar 

Wang Y, Lai X, Wu D, Liu B, Wang N, Rong L (2021) Umbilical mesenchymal stem cell-derived exosomes facilitate spinal cord functional recovery through the miR-199a-3p/145-5p-mediated NGF/TrkA signaling pathway in rats. Stem Cell Res Ther 12(1):117. https://doi.org/10.1186/s13287-021-02148-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu WD, Wang LH, Wei NX, Kong DH, Shao G, Zhang SR, Du YS (2019) MicroRNA-15a inhibits inflammatory response and apoptosis after spinal cord injury via targeting STAT3. Eur Rev Med Pharmacol Sci 23(21):9189–9198. https://doi.org/10.26355/eurrev_201911_19409

留言 (0)

沒有登入
gif