Insight study on synthesis and antibacterial mechanism of silver nanoparticles prepared from indigenous plant source of Jharkhand

Abbaszadegan A et al (2015) The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomater 2015:720654. https://doi.org/10.1155/2015/720654

Article  Google Scholar 

AbuDalo MA, Al-Mheidat IR, Al-Shurafat AW, Grinham C, Oyanedel-Craver V (2019) Synthesis of silver nanoparticles using a modified Tollens’ method in conjunction with phytochemicals and assessment of their antimicrobial activity. PeerJ 7:e6413. https://doi.org/10.7717/peerj.6413

Article  Google Scholar 

Alotaibi AM, Alsaleh NB, Aljasham AT, Tawfik EA, Almutairi MM, Assiri MA, Alkholief M, Almutairi MM (2022) Silver Nanoparticle-Based Combinations with Antimicrobial Agents against Antimicrobial-Resistant Clinical Isolates. Antibiotics. 11(9):1219

Article  Google Scholar 

Anandalakshmi K, Venugobal J, Ramasamy V (2016) Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci 6(3):399–408

Article  Google Scholar 

Ansari I, Sharma SN, Sundararajan M, Kumar R, Pandey BK (2017) Medicinal Plant in Jharkhand State: An Overview of Current Scenario. Glob J Eng Sci Res ISSN 2348 – 8034. https://www.researchgate.net/publication/321709268

Arias LS, Pessan JP, Vieira APM, Lima TMTD, Delbem ACB, Monteiro DR (2018) Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics 7(2):46. https://doi.org/10.3390/antibiotics7020046

Article  Google Scholar 

Aritonang HF, Koleangan H, Wuntu AD (2019) Synthesis of silver nanoparticles using aqueous extract of medicinal plants’(Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. Int J Microbiol. https://doi.org/10.1155/2019/8642303

Assa F, Jafarizadeh-Malmiri H, Ajamein H, Anarjan N, Vaghari H, Sayyar Z, Berenjian A (2016) A biotechnological perspective on the application of iron oxide nanoparticles. Nano Res 9(8):2203–2225. https://doi.org/10.1007/s12274-016-1131-9

Article  Google Scholar 

Azam A, Ahmed AS, Oves A, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomedicine 7:6003–6009. https://doi.org/10.2147/IJN.S35347

Article  Google Scholar 

Barage S, Lakkakula J, Sharma A, Roy A, Alghamdi S, Almehmadi M, Hossain M, Allahyani M, Abdulaziz O (2022) Nanomaterial in Food Packaging: A Comprehensive Review. J Nanomater 2022. https://doi.org/10.1155/2022/6053922

Chatterjee S, Bandyopadhyay A, Sarkar K (2011) Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnol 9(1):1–7. https://doi.org/10.1186/1477-3155-9-34

Article  Google Scholar 

Dahiya P, Purkayastha S (2012) Phytochemical screening and antimicrobial activity of some medicinal plants against multi-drug resistant bacteria from clinical isolates. Indian J Pharm Sci 74(5):443. https://doi.org/10.4103/0250-474X.108420

Article  Google Scholar 

Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831. https://doi.org/10.3389/fmicb.2016.01831

Article  Google Scholar 

Das J, Das MP, Velusamy P (2013) Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochim Acta A Mol Biomol Spectrosc 104:265–270. https://doi.org/10.1016/j.saa.2012.11.075

Article  Google Scholar 

Deshmukh BS, Waghmode A (2011) Role of wild edible fruits as a food resource: Traditional knowledge. Int J Pharm Life Sci 2(7)

Devaraj P, Kumari P, Aarti C, Renganathan A (2013) Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF-7 cell line. J Nanotech. https://doi.org/10.1155/2013/598328

Dibrov P, Dzioba J, Gosink KK, Häse CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob Agents Chemother 46(8):2668–70

Durán N, Nakazato G, Seabra AB (2016) Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments. Appl Microbiol Biotechnol 100(15):6555–6570

Article  Google Scholar 

El Zowalaty ME, Al Ali SHH, Husseiny MI, Geilich BM, Webster TJ, Hussein MZ (2015) The ability of streptomycin-loaded chitosan-coated magnetic nanocomposites to possess antimicrobial and antituberculosis activities. Int J Nanomedicine 10:3269. https://doi.org/10.2147/IJN.S74469

Article  Google Scholar 

Feinendegen LE (2002) Reactive oxygen species in cell responses to toxic agents. Hum Exp Toxicol 21(2):85–90

Article  Google Scholar 

Ficai D, Oprea O, Ficai A, Maria Holban A (2011) Metal oxide nanoparticles: potential uses in biomedical applications. Curr Proteomics 11(2):139–149. https://doi.org/10.2174/157016461102140917122838

Article  Google Scholar 

Gabrielyan L, Hovhannisyan A, Gevorgyan V, Ananyan M, Trchounian A (2019) Antibacterial effects of iron oxide (Fe3O4) nanoparticles: distinguishing concentration-dependent effects with different bacterial cells growth and membrane-associated mechanisms. Appl Microbiol Biotechnol 103(6):2773–2782. https://doi.org/10.1007/s00253-019-09653-x

Article  Google Scholar 

Gabrielyan L, Trchounian A (2019) Antibacterial activities of transient metals nanoparticles and membranous mechanisms of action. World J Microbiol Biotechnol 35(10):1–10. https://doi.org/10.1007/s11274-019-2742-6

Article  Google Scholar 

Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K et al (2012) Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine 7:483–496. https://doi.org/10.2147/IJN.S24793

Article  Google Scholar 

Isaac RS, Sakthivel G, Murthy CH (2013) Green synthesis of gold and silver nanoparticles using Averrhoa bilimbi fruit extract. J Nanotechnol. https://doi.org/10.1155/2013/906592

Jemal K, Sandeep BV, Pola S (2017) Synthesis, characterization, and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf derived callus extracts mediated silver nanoparticles. J Nanomater. https://doi.org/10.1155/2017/4213275

Jharkhand report (2006) A treasure trove of Herbal plants and forest produce, pp 22–40

Google Scholar 

Khadka D, Regmi R, Shrestha M, Banjara MR (2020) Green Synthesis of Silver Nanoparticles using Medicinal Plants BerberisAsiatica and Cassia Fistula and Evaluation of Antioxidant and Anti-bacterial Activities. Nepal J Sci Technol 19(2):25–32. https://doi.org/10.3126/njst.v20i1.39384

Article  Google Scholar 

Khare CP (2007) Indian Medicinal Plants Springer-Verlag Berlin, vol 52-53. https://doi.org/10.1007/978-0-387-70638-2_1717

Book  Google Scholar 

Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3(1):95–101. https://doi.org/10.1016/j.nano.2006.12.001

Article  Google Scholar 

Kim SH, Lee HS, Ryu DS, Choi SJ, Lee DS (2011) Antibacterial Activity of Silver-nanoparticles Against Staphylococcus aureus and Escherichia coli. Korean J Microbiol Biotechnol 39:77–85

Google Scholar 

Korshed P, Li L, Liu Z, Wang T (2016) The molecular mechanisms of the antibacterial effect of picosecond laser generated silver nanoparticles and their toxicity to human cells. PLoS One 11(8):e0160078

Article  Google Scholar 

Kumar JK, Prasad AD (2011) Identification and comparison of biomolecules in medicinal plants of Tephrosia tinctoria and Atylosia albicans by using FTIR. Rom J Biophys 21(1):63–71

Google Scholar 

Li J, Rong K, Zhao H, Li F, Lu Z, Chen R (2013) Highly selective antibacterial activities of silver nanoparticles against Bacillus subtilis. J Nanosci Nanotechnol 13:6806–6813. https://doi.org/10.1166/jnn.2013.7781

Article  Google Scholar 

Liao C, Li Y, Tjong SC (2019) Bactericidal and cytotoxic properties of silver nanoparticles. Int J Mol Sci 20(2):449

Article  Google Scholar 

Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H et al (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924. https://doi.org/10.1021/pr0504079

Article  Google Scholar 

Lu HD, Yang SS, Wilson BK, McManus SA, Chen CVH, Prud’homme R.K. (2017) Nanoparticle targeting of Gram-positive and Gram-negative bacteria for magnetic-based separations of bacterial pathogens. Appl Nanosci 7(3):83–93

Article  Google Scholar 

Margabandhu M, Sendhilnathan S, Maragathavalli S, Karthikeyan V, Annadurai B (2015) Synthesis characterization and antibacterial activity of iron oxide nanoparticles. Glob J Bio Sci Biotechnol 4(4):335–341

Google Scholar 

Meikle T, Dyett BP, Strachan JB, White J, Drummond CJ, Conn CE (2020) Preparation, characterization, and antimicrobial activity of cubosome encapsulated metal nanocrystals. ACS Appl Mater Interfaces 12(6):6944–6954. https://doi.org/10.1021/acsami.9b21783

Article  Google Scholar 

Mishra SK, Kumar A, Talukdar A (2010) Evaluation of binding property of mucilage from Litsea glutinosa wall. Pharm Res 2(5):289. https://doi.org/10.4103/0974-8490.72325

Article  Google Scholar 

Mohajerani A, Burnett L, Smith JV, Kurmus H, Milas J, Arulrajah A, Horpibulsuk S, Abdul KA (2019) Nanoparticles in construction materials and other applications, and implications of nanoparticle use. Materials 12(19):3052. https://doi.org/10.3390/ma12193052

Article  Google Scholar 

Mollick MMR, Bhowmick B, Maity D, Mondal D, Bain MK, Bankura K, Sarkar J, Rana D, Acharya K, Chattopadhyay D (2012) Green synthesis of silver nanoparticles using Paederia foetida L. leaf extract and assessment of their antimicrobial activities. Int J Green Nanotech 4(3):230–239. https://doi.org/10.1080/19430892.2012.706103

Article  Google Scholar 

Movasaghi M, Rehman S, Rehman IU (2008) Fourier Transform Iinfrared (FTIR) spectroscopy of biological tissues. Applied Spectrosc Rev 43:134–179

Article  Google Scholar 

Mukherjee K, Gupta R, Kumar G, Kumari S, Biswas S, Padmanabhan P (2018) Synthesis of silver nanoparticles by Bacillus clausii and computational profiling of nitrate reductase enzyme involved in production. J Genet Eng Biotechnol 16(2):527–536. https://doi.org/10.1016/j.jgeb.2018.04.004

Article  Google Scholar 

Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S (2014) Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics 4(3):316. https://doi.org/10.7150/thno.7819

Article  Google Scholar 

Murthy SK (2007) Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomedicine 2(2):129

Google Scholar 

Nalwade AR, Jadhav AA (2013) Biosynthesis of silver nanoparticles using leaf extract of Daturaalba Nees. and evaluation of their antibacterial activity. Arch Appl Sci Res 5:45–49

Google Scholar 

Narasimha G, Praveen B, Mallikarjuna K, Deva PRB (2011) Mushrooms (Agaricus bisporus) mediated biosynthesis of sliver nanoparticles, characterization and their antimicrobial activity. https://doi.org/10.7508/IJND.2011.01.004

Book  Google Scholar 

Narayanan KB, Park HH (2014) Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur J Plant Pathol 140(2):185–192. https://doi.org/10.1007/s10658-014-0399-4

Article  Google Scholar 

Narayanan KB, Sakthivel N (2011a) Extracellular synthesis of silver nanoparticles using the leaf extract of Coleus amboinicus Lour. Mater Res Bull 46(10):1708–1713. https://doi.org/10.1016/J.MATERRESBULL.2011.05.041

Article  Google Scholar 

Narayanan KB, Sakthivel N (2011b) Heterogeneous catalytic reduction of anthropogenic pollutant, 4-nitrophenol by silver-bionanocomposite using Cylindrocladium floridanum. Bioresour Technol 102(22):10737–10740. https://doi.org/10.1016/j.biortech.2011.08.103

Article  Google Scholar 

Noronha VT, Paula AJ, Durán G et al (2017) Silver nanoparticles in dentistry. Dent Mater 33(10):1110–1126. https://doi.org/10.1016/j.dental.2017.07.002

Article  Google Scholar 

Parida S, Mahalik G (2020) Green leafy vegetables used by seven tribes of Odisha, India. Plant Arch 20(2):1866–1871

Google Scholar 

Patil MP, Kim GD (2017) Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol 101(1):79–92

Article  Google Scholar 

Patil MP, Kim JO, Seo YB, Kang MJ, Kim GD (2021) Biogenic synthesis of metallic nanoparticles and their antibacterial applications. Journal of Life Science 31(9):862–872

留言 (0)

沒有登入
gif