The launch of satellite: DNA repeats as a cytogenetic tool in discovering the chromosomal universe of wild Triticeae

Adonina IG, Goncharov NP, Badaeva ED et al (2015) (GAA)n microsatellite as an indicator of the A genome reorganization during wheat evolution and domestication. Comp Cytogenet 9:533–547. https://doi.org/10.3897/CompCytogen.v9i4.5120

Article  PubMed  PubMed Central  Google Scholar 

Adonina IG, Timonova EM, Salina EA (2021) Introgressive hybridization of common wheat: results and prospects. Russ J Genet 57:390–407. https://doi.org/10.1134/S1022795421030029

Article  CAS  Google Scholar 

Appels R, Gerlach WL, Dennis ES et al (1980) Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNAs in cereals. Chromosoma 78:293–311. https://doi.org/10.1007/BF00327389

Article  CAS  Google Scholar 

Badaeva ED, Friebe B, Gill BS (1996) Genome differentiation in Aegilops. 2. Physical mapping of 5S and 18S–26S ribosomal RNA gene families in diploid species. Genome 39:1150–1158. https://doi.org/10.1139/g96-145

Article  CAS  PubMed  Google Scholar 

Badaeva ED, Zoshchuk SA, Paux E et al (2010) Fat element-a new marker for chromosome and genome analysis in the Triticeae. Chromosom Res 18:697–709. https://doi.org/10.1007/s10577-010-9151-x

Article  CAS  Google Scholar 

Badaeva ED, Amosova AV, Goncharov NP et al (2015) A set of cytogenetic markers allows the precise identification of all A-genome chromosomes in diploid and polyploid wheat. Cytogenet Genome Res 146:71–79. https://doi.org/10.1159/000433458

Article  PubMed  Google Scholar 

Badaeva ED, Surzhikov SA, Agafonov AV (2019) Molecular-cytogenetic analysis of diploid wheatgrass Thinopyrum bessarabicum (Savul. and Rayss) A. Löve. Comp Cytogenet 13:389–402. https://doi.org/10.3897/CompCytogen.v13i4.36879

Article  PubMed  PubMed Central  Google Scholar 

Baum BR, Edwards T, Johnson DA (2014) What does the nr5S DNA multigene family tell us about the genomic relationship between Dasypyrum breviaristatum and D. villosum (Triticeae: Poaceae)? Mol Genet Genomics 289:553–565. https://doi.org/10.1007/s00438-014-0825-5

Article  CAS  PubMed  Google Scholar 

Baum BR, Johnson DA (2018) Lophopyrum Á. Löve (1980), Thinopyrum Á. Löve (1980), Trichopyrum Á. Löve (1986): one, two or three genera? A study based on the nuclear 5S DNA. Genet Resour Crop Evol 65:161–186. https://doi.org/10.1007/s10722-017-0519-z

Article  Google Scholar 

Bedbrook JR, Jones J, O’Dell M et al (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19:545–560. https://doi.org/10.1016/0092-8674(80)90529-2

Article  CAS  PubMed  Google Scholar 

Bournival B, Obanni M, Abad A et al (1994) Isolation of a new species-specific repetitive sequence from Thinopyrum elongatum and its use in the studies of alien translocations. Genome 37:97–104. https://doi.org/10.1139/g94-012

Article  CAS  PubMed  Google Scholar 

Brasileiro-Vidal AC, Cuadrado A, Brammer SP et al (2003) Chromosome characterization in Thinopyrum ponticum (Triticeae, Poaceae) using in situ hybridization with different DNA sequences. Genet Mol Biol 26:505–510. https://doi.org/10.1590/S1415-47572003000400014

Article  CAS  Google Scholar 

Castilho A, Heslop-Harrison JS (1995) Physical mapping of 5S and 18S–25S rDNA and repetitive DNA sequences in Aegilops umbellulata. Genome 38:91–96. https://doi.org/10.1139/g95-011

Article  CAS  PubMed  Google Scholar 

Chen Q, Conner RL, Laroche A, Thomas JB (1998) Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome 41:580–586. https://doi.org/10.1139/g98-055

Article  CAS  PubMed  Google Scholar 

Chen G, Zheng Q, Bao Y et al (2012) Molecular cytogenetic identification of a novel dwarf wheat line with introgressed Thinopyrum ponticum chromatin. J Biosci 37:149–155. https://doi.org/10.1007/s12038-011-9175-1

Article  PubMed  Google Scholar 

Chen Hx, Han Hm, Li Qf et al (2018) Identification and genetic analysis of multiple P chromosomes of Agropyron cristatum in the background of common wheat. J Integr Agric 17:1697–1705. https://doi.org/10.1016/S2095-3119(17)61861-6

Article  CAS  Google Scholar 

Chen J, Tang Y, Yao L et al (2019) Cytological and molecular characterization of Thinopyrum bessarabicum chromosomes and structural rearrangements introgressed in wheat. Mol Breed 39:146. https://doi.org/10.1007/s11032-019-1054-8

Article  CAS  Google Scholar 

Chen Q, Conner RL, Laroche A, Ahmad F (2001) Molecular cytogenetic evidence for a high level of chromosome pairing among different genomes in Triticum aestivum–Thinopyrum intermedium hybrids. Theor Appl Genet 102:847–852. https://doi.org/10.1007/s001220000496

Article  CAS  Google Scholar 

Chen C, Zheng Z, Wu D et al (2022) Morphological, cytological, and molecular evidences for natural hybridization between Roegneria stricta and Roegneria turczaninovii (Triticeae: Poaceae). Ecol Evol 12:e8517. https://doi.org/10.1002/ece3.8517

Cseh A, Yang C, Hubbart-Edwards S et al (2019) Development and validation of an exome-based SNP marker set for identification of the St, Jr and Jvs genomes of Thinopyrym intermedium in a wheat background. Theor Appl Genet 132:1555–1570. https://doi.org/10.1007/s00122-019-03300-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cuadrado Á, Jouve N (2010) Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH). Chromosoma 119:495–503. https://doi.org/10.1007/s00412-010-0273-x

Article  PubMed  Google Scholar 

Cui Y, Zhang Y, Qi J et al (2018) Identification of chromosomes in Thinopyrum intermedium and wheat Th. intermedium amphiploids based on multiplex oligonucleotide probes. Genome 61:515–521. https://doi.org/10.1139/gen-2018-0019

Article  CAS  PubMed  Google Scholar 

Cui Y, Xing P, Qi X et al (2021) Characterization of chromosome constitution in three wheat - Thinopyrum intermedium amphiploids revealed frequent rearrangement of alien and wheat chromosomes. BMC Plant Biol 21:129. https://doi.org/10.1186/s12870-021-02896-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai C, Gao A (2016) Identification of wheat-Agropyron cristatum 6P translocation lines and localization of 6P-specific EST markers. Euphytica 208:265–275. https://doi.org/10.1007/s10681-015-1587-9

Article  CAS  Google Scholar 

Dai K, Zhao R, Shi M et al (2020) Dissection and cytological mapping of chromosome arm 4VS by the development of wheat-Haynaldia villosa structural aberration library. Theor Appl Genet 133:217–226. https://doi.org/10.1007/s00122-019-03452-8

Article  CAS  PubMed  Google Scholar 

Dai Y, Huang S, Sun G et al (2021) Origins and chromosome differentiation of Thinopyrum elongatum revealed by PepC and Pgk1 genes and ND-FISH. Genome 64:901–913. https://doi.org/10.1139/gen-2019-0176

Danilova TV, Friebe B, Gill BS (2012) Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma 121:597–611. https://doi.org/10.1007/s00412-012-0384-7

Article  CAS  PubMed  Google Scholar 

Danilova TV, Friebe B, Gill BS (2014) Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor Appl Genet 127:715–730. https://doi.org/10.1007/s00122-013-2253-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Pace C, Vaccino P, Cionini PG et al (2011) Dasypyrum. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg, p 185–292. https://doi.org/10.1007/978-3-642-14228-4_4

Chapter  Google Scholar 

Divashuk MG, Khuat TML, Kroupin PY et al (2016) Variation in copy number of Ty3/Gypsy centromeric retrotransposons in the genomes of Thinopyrum intermedium and its diploid progenitors. PLoS One 11:e0154241. https://doi.org/10.1371/journal.pone.0154241

Divashuk MG, Nikitina EA, Sokolova VM et al (2022) qPCR as a Selective Tool for Cytogenetics. Plants 12:80. https://doi.org/10.3390/plants12010080

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong-Wei G, Gan H, Mao-Yun S et al (2008) Identification of wheat chromosomes sorted by flow cytometry. Acta Agronomica Sinica 34:89–94. https://doi.org/10.1016/S1875-2780(08)60004-8

Article  Google Scholar 

Dong Z-Z, Fan X, Sha L-N et al (2015) Phylogeny and differentiation of the St genome in Elymus L. sensu lato (Triticeae; Poaceae) based on one nuclear DNA and two chloroplast genes. BMC Plant Biol 15:179. https://doi.org/10.1186/s12870-015-0517-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dou Q-W, Chen Z-G, Liu Y-A, Tsujimoto H (2009) High frequency of karyotype variation revealed by sequential FISH and GISH in plateau perennial grass forage Elymus nutans. Breeding science 59:651–656. https://doi.org/10.1270/jsbbs.59.651

Dou QW, Zhang TL, Tsujimoto H (2011) Physical mapping of repetitive sequences and genome analysis in six Elymus species by in situ hybridization. J Syst Evol 49:347–352. https://doi.org/10.1111/j.1759-6831.2011.00138.x

Article  Google Scholar 

Dou QW, Lei Y, Li X et al (2012) Characterization of alien chromosomes in backcross derivatives of Triticum aestivum × Elymus rectisetus hybrids by using molecular markers and sequential multicolor FISH/GISH. Genome 55:337–347. https://doi.org/10.1139/g2012-018

Article  CAS  PubMed  Google Scholar 

Dou Q, Wang RRC, Lei Y et al (2013) Genome analysis of seven species of Kengyilia (Triticeae: Poaceae) with FISH and GISH. Genome 56:641–649. https://doi.org/10.1139/gen-2013-0113

Article  CAS  PubMed  Google Scholar 

Dou Q, Yu F, Li Y et al (2017) High molecular karyotype variation revealed in indigenous Elymus nutans in the Qinghai Plateau. Plant Divers 39:117–122. https://doi.org/10.1016/j.pld.2017.05.003

Article  PubMed  PubMed Central  Google Scholar 

Du P, Zhuang L, Wang Y et al (2017) Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome 60:93–103. https://doi.org/10.1139/gen-2016-0095

Article  CAS  PubMed  Google Scholar 

Dubcovsky J, Schlatter AR, Echaide M (1997) Genome analysis of South American Elymus (Triticeae) and Leymus (Triticeae) species based on variation in repeated nucleotide sequences. Genome 40:505–520. https://doi.org/10.1139/g97-067

Article  CAS  PubMed 

留言 (0)

沒有登入
gif