The TIMELESS effort for timely DNA replication and protection

Leman AR, Noguchi E (2012) Local and global functions of Timeless and Tipin in replication fork protection. Cell Cycle 11(21):3945–3955

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rageul J, Park JJ, Zeng PP, Lee EA, Yang J, Hwang S, Lo N, Weinheimer AS, Scharer OD, Yeo JE et al (2020) SDE2 integrates into the TIMELESS-TIPIN complex to protect stalled replication forks. Nat Commun 11(1):5495

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weinheimer AS, Paung Y, Rageul J, Khan A, Lo N, Ho B, Tong M, Alphonse S, Seeliger MA, Kim H (2022) Extended DNA-binding interfaces beyond the canonical SAP domain contribute to the function of replication stress regulator SDE2 at DNA replication forks. J Biol Chem 298(8):102268

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai YD, Chiu JC (2021) Timeless in animal circadian clocks and beyond. FEBS J 289(21):6559–6575

Article  PubMed  PubMed Central  Google Scholar 

Benna C, Scannapieco P, Piccin A, Sandrelli F, Zordan M, Rosato E, Kyriacou CP, Valle G, Costa R (2000) A second timeless gene in Drosophila shares greater sequence similarity with mammalian tim. Curr Biol 10(14):R512-513

Article  CAS  PubMed  Google Scholar 

Chou DM, Elledge SJ (2006) Tipin and Timeless form a mutually protective complex required for genotoxic stress resistance and checkpoint function. Proc Natl Acad Sci U S A 103(48):18143–18147

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holzer S, Degliesposti G, Kilkenny ML, Maslen SL, Matak-Vinkovic D, Skehel M, Pellegrini L (2017) Crystal structure of the N-terminal domain of human Timeless and its interaction with Tipin. Nucleic Acids Res 45(9):5555–5563

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grabarczyk DB (2020) Crystal structure and interactions of the Tof1-Csm3 (Timeless-Tipin) fork protection complex. Nucleic Acids Res 48(12):6996–7004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baretic D, Jenkyn-Bedford M, Aria V, Cannone G, Skehel M, Yeeles JTP (2020) Cryo-EM structure of the fork protection complex bound to CMG at a replication fork. Mol Cell 78(5):926-940 e913

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones ML, Baris Y, Taylor MRG, Yeeles JTP (2021) Structure of a human replisome shows the organisation and interactions of a DNA replication machine. EMBO J 40(23):e108819

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hodgson B, Calzada A, Labib K (2007) Mrc1 and Tof1 regulate DNA replication forks in different ways during normal S phase. Mol Biol Cell 18(10):3894–3902

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petermann E, Helleday T, Caldecott KW (2008) Claspin promotes normal replication fork rates in human cells. Mol Biol Cell 19(6):2373–2378

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szyjka SJ, Viggiani CJ, Aparicio OM (2005) Mrc1 is required for normal progression of replication forks throughout chromatin in S. cerevisiae. Mol Cell 19(5):691–697

Article  CAS  PubMed  Google Scholar 

Tourriere H, Versini G, Cordon-Preciado V, Alabert C, Pasero P (2005) Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53. Mol Cell 19(5):699–706

Article  CAS  PubMed  Google Scholar 

Kang YH, Farina A, Bermudez VP, Tappin I, Du F, Galal WC, Hurwitz J (2013) Interaction between human Ctf4 and the Cdc45/Mcm2-7/GINS (CMG) replicative helicase. Proc Natl Acad Sci U S A 110(49):19760–19765

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kilkenny ML, Simon AC, Mainwaring J, Wirthensohn D, Holzer S, Pellegrini L (2017) The human CTF4-orthologue AND-1 interacts with DNA polymerase alpha/primase via its unique C-terminal HMG box. Open Biol 7(11):17021

Article  PubMed  PubMed Central  Google Scholar 

Simon AC, Zhou JC, Perera RL, van Deursen F, Evrin C, Ivanova ME, Kilkenny ML, Renault L, Kjaer S, Matak-Vinkovic D et al (2014) A Ctf4 trimer couples the CMG helicase to DNA polymerase alpha in the eukaryotic replisome. Nature 510(7504):293–297

Article  CAS  PubMed  PubMed Central  Google Scholar 

Villa F, Simon AC, Ortiz Bazan MA, Kilkenny ML, Wirthensohn D, Wightman M, Matak-Vinkovic D, Pellegrini L, Labib K (2016) Ctf4 Is a Hub in the eukaryotic replisome that links multiple CIP-Box proteins to the CMG helicase. Mol Cell 63(3):385–396

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho WH, Kang YH, An YY, Tappin I, Hurwitz J, Lee JK (2013) Human Tim-Tipin complex affects the biochemical properties of the replicative DNA helicase and DNA polymerases. Proc Natl Acad Sci U S A 110(7):2523–2527

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aria V, De Felice M, Di Perna R, Uno S, Masai H, Syvaoja JE, van Loon B, Hubscher U, Pisani FM (2013) The human Tim-Tipin complex interacts directly with DNA polymerase epsilon and stimulates its synthetic activity. J Biol Chem 288(18):12742–12752

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yeeles JT, Deegan TD, Janska A, Early A, Diffley JF (2015) Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519(7544):431–435

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yeeles JTP, Janska A, Early A, Diffley JFX (2017) How the eukaryotic replisome achieves rapid and efficient DNA replication. Mol Cell 65(1):105–116

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lewis JS, Spenkelink LM, Schauer GD, Hill FR, Georgescu RE, O’Donnell ME, van Oijen AM (2017) Single-molecule visualization of Saccharomyces cerevisiae leading-strand synthesis reveals dynamic interaction between MTC and the replisome. Proc Natl Acad Sci U S A 114(40):10630–10635

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bando M, Katou Y, Komata M, Tanaka H, Itoh T, Sutani T, Shirahige K (2009) Csm3, Tof1, and Mrc1 form a heterotrimeric mediator complex that associates with DNA replication forks. J Biol Chem 284(49):34355–34365

Article  CAS  PubMed  PubMed Central  Google Scholar 

Komata M, Bando M, Araki H, Shirahige K (2009) The direct binding of Mrc1, a checkpoint mediator, to Mcm6, a replication helicase, is essential for the replication checkpoint against methyl methanesulfonate-induced stress. Mol Cell Biol 29(18):5008–5019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lou H, Komata M, Katou Y, Guan Z, Reis CC, Budd M, Shirahige K, Campbell JL (2008) Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint. Mol Cell 32(1):106–117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baris Y, Taylor MRG, Aria V, Yeeles JTP (2022) Fast and efficient DNA replication with purified human proteins. Nature 606(7912):204–210

Article  CAS  PubMed  PubMed Central  Google Scholar 

Katou Y, Kanoh Y, Bando M, Noguchi H, Tanaka H, Ashikari T, Sugimoto K, Shirahige K (2003) S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424(6952):1078–1083

Article  CAS  PubMed  Google Scholar 

Leman AR, Noguchi C, Lee CY, Noguchi E (2010) Human Timeless and Tipin stabilize replication forks and facilitate sister-chromatid cohesion. J Cell Sci 123(Pt 5):660–670

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noguchi E, Noguchi C, McDonald WH, Yates JR 3rd, Russell P (2004) Swi1 and Swi3 are components of a replication fork protection complex in fission yeast. Mol Cell Biol 24(19):8342–8355

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu X, Wang JT, Li M, Liu Y (2016) TIMELESS suppresses the accumulation of aberrant CDC45.MCM2–7.GINS replicative helicase complexes on human chromatin. J Biol Chem 291(43):22544–22558

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang CC, Suzuki M, Yamakawa S, Uno S, Ishii A, Yamazaki S, Fukatsu R, Fujisawa R, Sakimura K, Tsurimoto T et al (2016) Claspin recruits Cdc7 kinase for initiation of DNA replication in human cells. Nat Commun 7:12135

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif