Therapeutic Potential of Targeting the NLRP3 Inflammasome in Rheumatoid Arthritis

Aletaha, D., T. Neogi, A.J. Silman, J. Funovits, D.T. Felson, C.O. Bingham 3rd., et al. 2010. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis and Rheumatism 62: 2569–2581. https://doi.org/10.1002/art.27584.

Article  PubMed  Google Scholar 

McInnes, I.B., and G. Schett. 2011. The pathogenesis of rheumatoid arthritis. New England Journal of Medicine 365: 2205–2219. https://doi.org/10.1056/NEJMra1004965.

Article  CAS  PubMed  Google Scholar 

Smolen, J.S., D. Aletaha, and I.B. McInnes. 2016. Rheumatoid arthritis. Lancet 388: 2023–2038. https://doi.org/10.1016/S0140-6736(16)30173-8.

Article  CAS  PubMed  Google Scholar 

Chatzidionysiou, K., S. Emamikia, J. Nam, S. Ramiro, J. Smolen, D. van der Heijde, et al. 2017. Efficacy of glucocorticoids, conventional and targeted synthetic disease-modifying antirheumatic drugs: A systematic literature review informing the 2016 update of The EULAR recommendations for the management of rheumatoid arthritis. Annals of the Rheumatic Diseases 76: 1102–1107. https://doi.org/10.1136/annrheumdis-2016-210711.

Article  CAS  PubMed  Google Scholar 

Ramiro, S., A. Sepriano, K. Chatzidionysiou, J.L. Nam, J.S. Smolen, D. van der Heijde, et al. 2017. Safety of synthetic and biological DMARDs: A systematic literature review informing the 2016 update of the EULAR recommendations for management of rheumatoid arthritis. Annals of the Rheumatic Diseases 76: 1101–1136. https://doi.org/10.1136/annrheumdis-2016-210708.

Article  PubMed  Google Scholar 

van Walsem, A., S. Pandhi, R.M. Nixon, P. Guyot, A. Karabis, and R.A. Moore. 2015. Relative benefit-risk comparing diclofenac to other traditional non-steroidal anti-inflammatory drugs and cyclooxygenase-2 inhibitors in patients with osteoarthritis or rheumatoid arthritis: A network meta-analysis. Arthritis Research & Therapy 17: 66. https://doi.org/10.1186/s13075-015-0554-0.

Article  CAS  Google Scholar 

Ravindran, V., S. Rachapalli, and E.H. Choy. 2009. Safety of medium- to long-term glucocorticoid therapy in rheumatoid arthritis: A meta-analysis. Rheumatology (Oxford) 48: 807–811. https://doi.org/10.1093/rheumatology/kep096.

Article  CAS  PubMed  Google Scholar 

Strangfeld, A., F. Hierse, R. Rau, G.R. Burmester, B. Krummel-Lorenz, W. Demary, et al. 2010. Risk of incident or recurrent malignancies among patients with rheumatoid arthritis exposed to biologic therapy in the German biologics register RABBIT. Arthritis Research & Therapy 12. https://doi.org/10.1186/ar2904.

Mercer, L.K., J. Askling, P. Raaschou, W.G. Dixon, L. Dreyer, M.L. Hetland, et al. 2017. Risk of invasive melanoma in patients with rheumatoid arthritis treated with biologics: Results from a collaborative project of 11 European biologic registers. Annals of the Rheumatic Diseases 76: 386–391. https://doi.org/10.1136/annrheumdis-2016-209285.

Article  PubMed  Google Scholar 

Liston, A., and S.L. Masters. 2017. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nature Reviews Immunology 17: 208–214. https://doi.org/10.1038/nri.2016.151.

Article  CAS  PubMed  Google Scholar 

Ben Hamad, M., F. Cornelis, S. Marzouk, G. Chabchoub, Z. Bahloul, A. Rebai, et al. 2012. Association study of CARD8 (p.C10X) and NLRP3 (p.Q705K) variants with rheumatoid arthritis in French and Tunisian populations. International Journal of Immunogenetics, 39:131–136. https://doi.org/10.1111/j.1744-313X.2011.01070.x.

Shao, S., C.J. Chen, G.N. Shi, Y. Zhou, Y.Z. Wei, N.Y. Fan, et al. 2021. Therapeutic potential of the target on NLRP3 inflammasome in multiple sclerosis. Pharmacology and Therapeutics 227. https://doi.org/10.1016/j.pharmthera.2021.107880.

Dalbeth, N., A.L. Gosling, A. Gaffo, and A. Abhishek. 2021. Gout. Lancet 397:1843–1855. https://doi.org/10.1016/S0140-6736(21)00569-9.

Li, Z., J. Guo, and L. Bi. 2020. Role of the NLRP3 inflammasome in autoimmune diseases. Biomedicine and Pharmacotherapy 130: 110542. https://doi.org/10.1016/j.biopha.2020.110542.

Xia, S., L.R.t. Hollingsworth, and H. Wu. 2020. Mechanism and regulation of gasdermin-mediated cell death. Cold Spring Harbor Perspectives in Biology 12. https://doi.org/10.1101/cshperspect.a036400.

Dekkers, J., R.E. Toes, T.W. Huizinga, and D. van der Woude. 2016. The role of anticitrullinated protein antibodies in the early stages of rheumatoid arthritis. Current Opinion in Rheumatology 28: 275–281. https://doi.org/10.1097/BOR.0000000000000277.

Article  CAS  PubMed  Google Scholar 

Lacerte, P., A. Brunet, B. Egarnes, B. Duchene, J.P. Brown, and J. Gosselin. 2016. Overexpression of TLR2 and TLR9 on monocyte subsets of active rheumatoid arthritis patients contributes to enhance responsiveness to TLR agonists. Arthritis Research & Therapy 18: 10. https://doi.org/10.1186/s13075-015-0901-1.

Article  CAS  Google Scholar 

Yu, M., H.C. Wang, A.H. Ding, D.T. Golenbock, E. Latz, C.J. Czura, et al. 2006. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 26: 174–179. https://doi.org/10.1097/01.shk.0000225404.51320.82.

Article  CAS  PubMed  Google Scholar 

Jiang, C.S.,  W.H. Zhu, J. Xu, B. Wang, W.K. Hou, R. Zhang, et al. 2014. MicroRNA-26a negatively regulates toll-like receptor 3 expression of rat macrophages and ameliorates pristane induced arthritis in rats. Arthritis Research & Therapy 16. https://doi.org/10.1186/ar4435.

Elshabrawy, H.A., A.E. Essani, Z. Szekanecz, D.A. Fox, and S. Shahrara. 2017. TLRs, future potential therapeutic targets for RA. Autoimmunity Reviews 16: 103–113. https://doi.org/10.1016/j.autrev.2016.12.003.

Article  CAS  PubMed  Google Scholar 

Clanchy, F.I.L., F. Borghese, J. Bystrom, A. Balog, H. Penn, D.N. Hull, et al. 2021. TLR expression profiles are a function of disease status in rheumatoid arthritis and experimental arthritis. Journal of Autoimmunity 118. https://doi.org/10.1016/j.jaut.2021.102597.

Sakalyte, R., J. Denkovskij, E. Bernotiene, S. Stropuviene, S.O. Mikulenaite, G. Kvederas, et al. 2021. The expression of inflammasomes NLRP1 and NLRP3, Toll-like receptors, and vitamin D receptor in synovial fibroblasts from patients with different types of knee arthritis. Frontiers in Immunology 12: 767512. https://doi.org/10.3389/fimmu.2021.767512.

Brand, D.D., K.A. Latham, and E.F. Rosloniec. 2007. Collagen-induced arthritis. Nature Protocols 2: 1269–1275. https://doi.org/10.1038/nprot.2007.173.

Article  CAS  PubMed  Google Scholar 

Chen, S.Y., A.L. Shiau, Y.T. Li, Y.S. Lin, C.H. Lee, C.L. Wu, et al. 2012. Suppression of collagen-induced arthritis by intra-articular lentiviral vector-mediated delivery of toll-like receptor 7 short hairpin RNA gene. Gene Therapy 19: 752–760. https://doi.org/10.1038/gt.2011.173.

Article  CAS  PubMed  Google Scholar 

Sacre, S.M., E. Andreakos, S. Kiriakidis, P. Amjadi, A. Lundberg, G. Giddins, et al. 2007. The toll-like receptor adaptor proteins MyD88 and Mal/TIRAP contribute to the inflammatory and destructive processes in a human model of rheumatoid arthritis. American Journal of Pathology 170: 518–525. https://doi.org/10.2353/ajpath.2007.060657.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, Q.Q., R. Sobkoviak, A.R. Jockheck-Clark, B. Shi, A.M. Mandelin, P.P. Tak, et al. 2009. Heat shock protein 96 is elevated in rheumatoid arthritis and activates macrophages primarily via TLR2 signaling. Journal of Immunology 182: 4965–4973. https://doi.org/10.4049/jimmunol.0801563.

Article  CAS  Google Scholar 

Unterberger, S., K.A. Davies, S.B. Rambhatla, and S. Sacre. 2021. Contribution of toll-like receptors and the NLRP3 inflammasome in rheumatoid arthritis pathophysiology. Immunotargets Ther 10: 285–298. https://doi.org/10.2147/Itt.S288547.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sokolove, J., X.Y. Zhao, P.E. Chandra, and W.H. Robinson. 2011. Immune complexes containing citrullinated fibrinogen costimulate macrophages via toll-like receptor 4 and Fc gamma receptor. Arthritis Rheum-Us 63: 53–62. https://doi.org/10.1002/art.30081.

Article  CAS  Google Scholar 

Dong, X., Z. Zheng, P. Lin, X. Fu, F. Li, J. Jiang, et al. 2020. ACPAs promote IL-1beta production in rheumatoid arthritis by activating the NLRP3 inflammasome. Cellular & Molecular Immunology 17: 261–271. https://doi.org/10.1038/s41423-019-0201-9.

Article  CAS  Google Scholar 

Yang, Q.D.,  W.H. Zhao, Y.Y. Chen, Y. Chen, J.L. Shi, R. Qin, et al. 2021. RelA/microRNA-30a/NLRP3 signal axis is involved in rheumatoid arthritis via regulating NLRP3 inflammasome in macrophages. Cell Death and Disease 12. https://doi.org/10.1038/s41419-021-04349-5.

Laurent, L., C. Clavel, O. Lemaire, F. Anquetil, M. Cornillet, L. Zabraniecki, et al. 2011. Fc gamma receptor profile of monocytes and macrophages from rheumatoid arthritis patients and their response to immune complexes formed with autoantibodies to citrullinated proteins. Annals of the Rheumatic Diseases 70: 1052–1059. https://doi.org/10.1136/ard.2010.142091.

Article  CAS  PubMed  Google Scholar 

Liu, Y., W. Wei, Y. Wang, C. Wan, Y. Bai, X. Sun, et al. 2019. TNF-alpha/calreticulin dual signaling induced NLRP3 inflammasome activation associated with HuR nucleocytoplasmic shuttling in rheumatoid arthritis. Inflammation Research 68: 597–611. https://doi.org/10.1007/s00011-019-01244-w.

Article  CAS  PubMed  Google Scholar 

Zucal, C., V. D'Agostino, R. Loffredo, B. Mantelli, NatthakanThongon, P. Lal, et al. 2015. Targeting the multifaceted HuR protein, benefits and caveats. Current Drug Targets 16: 499–515. https://doi.org/10.2174/1389450116666150223163632.

Swanson, K.V., M. Deng, and J.P. Ting. 2019. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nature Reviews Immunology 19: 477–489. https://doi.org/10.1038/s41577-019-0165-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dayer, J.M. 2003. The pivotal role of interleukin-1 in the clinical manifestations of rheumatoid arthritis. Rheumatology (Oxford) 42 Suppl 2: ii3–10. https://doi.org/10.1093/rheumatology/keg326.

Munoz-Planillo, R., P. Kuffa, G. Martinez-Colon, B.L. Smith, T.M. Rajendiran, and G. Nunez. 2013. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38: 1142–1153. https://doi.org/10.1016/j.immuni.2013.05.016.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan, Z.D., Y.Y. Zhang, Y.H. Guo, N. Huang, H.H. Ma, H. Huang, et al. 2016. Involvement of P2X7 receptor signaling on regulating the differentiation of Th17 cells and type II collagen-induced arthritis in mice. Scientific Reports United Kingdom 6. https://doi.org/10.1038/srep35804.

Portales-Cervantes, L., P. Nino-Moreno, L. Doniz-Padilla, L. Baranda-Candido, M. Garcia-Hernandez, M. Salgado-Bustamante, et al. 2010. Expression and function of the P2X(7) purinergic receptor in patients with systemic lupus erythematosus and rheumatoid arthritis. Human Immunology 71: 818–825. https://doi.org/10.1016/j.humimm.2010.05.008.

Article  CAS  PubMed  Google Scholar 

Purohit, R., A.K. Bera. 2021. Pannexin 1 plays a pro-survival role by attenuating P2X7 receptor-mediated Ca2+ influx. Cell Calcium 99. https://doi.org/10.1016/j.ceca.2021.102458.

Li, Y.Y., Y. Shen, K. Jin, Z.K. Wen, W.Q. Cao, B.W. Wu, et al. 2019. The DNA repair nuclease MRE11A functions as a mitochondrial protector and prevents T cell pyroptosis and tissue inflammation. Cell Metabolism, 2019;30: 477-+. https://doi.org/10.1016/j.cmet.2019.06.016.

Hofer, A.M., and E.M. Brown. 2003. Extracellular calcium sensing and signalling. Nature Reviews Molecular Cell Biology 4: 530–538. https://doi.org/10.1038/nrm1154.

Article  CAS  PubMed  Google Scholar 

Liao, J., S. Zhang, S. Yang, Y. Lu, K. Lu, Y. Wu et al. Interleukin-6-mediated-Ca(2+) handling abnormalities contributes to atrial fibrillation in sterile pericarditis rats. Frontiers in Immunology, 2021;12: 758157. https://doi.org/10.3389/fimmu.2021.758157.

Paccou, J., C. Boudot, C. Renard, S. Liabeuf, S. Kamel, P. Fardellone, et al. 2014. Total calcium-sensing receptor expression in circulating monocytes is increased in rheumatoid arthritis patients with severe coronary artery calcification. Annals of the Rheumatic Diseases 73: 846–846. https://doi.org/10.1136/annrheumdis-2014-eular.2377.

Article  Google Scholar 

Lee, G.S., N. Subramanian, A.I. Kim, I. Aksentijevich, R. Goldbach-Mansky, D.B. Sacks, et al. 2012. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492: 123-+. https://doi.org/10.1038/nature11588.

Rossol, M., M. Pierer, N. Raulien, D. Quandt, U. Meusch, K. Rothe, et al. 2012. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nature Communications 3. https://doi.org/10.1038/ncomms2339.

Damgaard, D., L. Senolt, M.F. Nielsen, G.J. Pruijn, and C.H. Nielsen. 2014. Demonstration of extracellular peptidylarginine deiminase (PAD) activity in synovial fluid of patients with rheumatoid arthritis using a novel assay for citrullination of fibrinogen. Arthritis Research & Therapy 16. https://doi.org/10.1186/s13075-014-0498-9.

Bonavita, E., S. Gentile, M. Rubino, V. Maina, R. Papait, P. Kunderfranco, et al. 2015. PTX3 is an extrinsic oncosuppressor regulating complement-dependent inflammation in cancer. Cell 160: 700–714. https://doi.org/10.1016/j.cell.2015.01.004.

Article  CAS  PubMed  Google Scholar 

Shimada, K., T.R. Crother, J. Karlin, J. Dagvadorj, N. Chiba, S. Chen, et al. 2012. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36: 401–414. https://doi.org/10.1016/j.immuni.2012.01.009.

Article

留言 (0)

沒有登入
gif