Deep Intelligence: What AI Should Learn from Nature’s Imagination

Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80. https://doi.org/10.1162/neco.1997.9.8.1735.

Article  Google Scholar 

Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training of deep networks. Adv Neur Inform Proc Syst. 2007;153–160.

Hinton GE. Learning multiple layers of representation. Trends Cogn Sci. 2007;11:428–34.

Article  Google Scholar 

Ciresan D, Meier U, Schmidhuber J. Multi-column deep neural networks for image classification, Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. 2012;3642–3649. doi:https://doi.org/10.1109/cvpr.2012.6248110.

Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks. Adv Neur Inform Proc Syst. 2012.

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44. https://doi.org/10.1038/nature14539.

Article  Google Scholar 

Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85–117. https://doi.org/10.1016/j.neunet.2014.09.003.

Article  Google Scholar 

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. Adv Neur Inform Proc Syst 2017. arXiv:1706.03762.

Sejnowski TJ. The deep learning revolution. MIT press. 2018.

Pearl J, McKenzie D. The book of why: the new science of cause and effect. Basic Books; 2018.

Google Scholar 

Harnett K. To build truly intelligent machines, teach them cause and effect. Quanta. 2018. https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/.

Marcus G, Davis E. Rebooting AI: building artificial intelligence we can trust. Pantheon. 2019.

Heaven D. Why deep-learning AIs are so easy to fool. Nature. 2019;574:163–6. https://doi.org/10.1038/d41586-019-03013-5.

Article  Google Scholar 

Mitchell M. Artificial intelligence: a guide for thinking humans. Strauss and Giroux: Farrar; 2019.

Google Scholar 

Brooks RA. The cul-de-sac of the computational metaphor: a talk by Rodney Brooks. Edge. 2019. https://www.edge.org/conversation/rodney_a_brooks-the-cul-de-sac-of-the-computational-metaphor.

Marcus G, Davis E, Aaronson S. A very preliminary analysis of DALL-E 2. 2022. arXiv:2204.13807 [cs.CV].

Minai AA, Braha D, Bar-Yam Y. Complex systems engineering: a new paradigm, in complex engineered systems: science meets technology, D. Braha, A.A. Minai, and Y. Bar-Yam (Eds.). Springer Verlag. 2006;1–22.

Raff RA. The shape of life: genes, development, and the evolution of animal form. University of Chicago Press. 1996.

Book  Google Scholar 

Schlosser G, Wagner GP (eds.). Modularity in development and evolution. Univer Chic Press. 2004.

Carroll SB. Endless forms most beautiful: the new science of evo-devo and the making of the animal kingdom. WW Norton & Company. 2005.

Wagner A. The origins of evolutionary innovations. Oxford: Oxford University Press; 2011.

Book  Google Scholar 

Meunier D, Lambiotte R, Bullmore E. Modular and hierarchically modular organization of brain networks. Front Neurosci. 2010;4. https://doi.org/10.3389/fnins.2010.00200.

Grossberg S. The complementary brain: Unifying brain dynamics and modularity. Trends Cogn Sci. 2000;4:233–46. https://doi.org/10.1016/S1364-6613(00)01464-9.

Article  Google Scholar 

Grossberg S. Conscious mind, resonant brain: how each brain makes a mind. Oxford University Press; 2021.

Book  Google Scholar 

d’Avella A, Pai DK. Modularity for sensorimotor control: evidence and a new prediction. J Mot Behav. 2010;42:361–9.

Article  Google Scholar 

Geary DC. The origin of mind: evolution of brain, cognition, and general intelligence. Am Psychol Assoc. 2005.

Book  Google Scholar 

Thelen E, Smith LB. A dynamic systems approach to the development of cognition and action. MIT Press; 1994.

Google Scholar 

Kelso JAS. Dynamic patterns: the self-organization of brain and behavior. Bradford Books; 1995.

Google Scholar 

Goldfield EC. Emergent forms: origins and early development of human action and perception. Oxford University Press; 1995.

Google Scholar 

Nolfi S, Floreano D. Evolutionary robotics: the biology, intelligence, and technology of self-organizing machines. MIT press. 2000.

Weng J, McClelland J, Pentland A, Sporns O, Stockman I, Sur M, Thelen E. Autonomous mental development by robots and animals. Science. 2001;291:599–600.

Article  Google Scholar 

Jin Y, Meng Y. Morphogenetic robotics: a new emerging field in developmental robotics. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Reviews and Applications. 2011;41(2):145–60.

Article  Google Scholar 

Weng J. Symbolic models and emergent models: a review. IEEE Trans Auton Ment Dev. 2011;4:29–54.

Article  Google Scholar 

Cangelosi A, Schlesinger M. Developmental Robotics: from babies to robots. MIT Press. 2015.

Vujovic V, Rosendo A, Brodbeck L, Iida F. Evolutionary developmental robotics: Improving morphology and control of physical robots. Artificial Life. 2017;23(2):169–185. https://doi.org/10.1162/ARTL_a_00228.

Merel J, Botvinick M, Wayne G. Hierarchical motor control in mammals and machines. Nat Commun. 2019;10:5489. https://doi.org/10.1038/s41467-019-13239-6.

Article  Google Scholar 

Botvinick M, Ritter S, Wang JX, Kurth-Nelson Z, Hassabis D. Reinforcement learning, fast and slow. Trends Cogn Sci. 2019;23:408–22. https://doi.org/10.1016/j.tics.2019.02.006.

Article  Google Scholar 

Barretto A, Hou S, Borsa D, Silver D, Precup D. Fast reinforcement learning with generalized policy updates. PNAS. 2020;117:30079–87.

Article  Google Scholar 

Spearman C. General intelligence, objectively determined and measured. Am J Psychol. 1904;15:201–93.

Article  Google Scholar 

Cattell EB. Theory of fluid and crystallized intelligence: a critical experiment. J Educ Psychol. 1963;54:1–22.

Article  Google Scholar 

Kahneman D. Thinking fast and slow. Straus and Giroux: Farrar; 2011.

Google Scholar 

Callebaut W, Rasskin-Gutman D (eds.). Modularity: understanding the development and evolution of natural complex systems. MIT Press. 2005.

Whitacre JM. Degeneracy: A link between evolvability, robustness and complexity in biological systems. Theor Biol Med Model. 2010;7:6. https://doi.org/10.1186/1742-4682-7-6.

Article  Google Scholar 

Dawkins R. The evolution of evolvability, In Langton C. G. (Ed.), Artificial life: the proceedings of an interdisciplinary workshop on the synthesis and simulation of living systems. Addison‐Wesley Publishing Co. 1988;201–220.

Kirschner M, Gerhart J. Evolvability. PNAS. 1998;95(15):8420–7. https://doi.org/10.1073/pnas.95.15.8420.

Article  Google Scholar 

Wagner A. Robustness and evolvability in living systems. Princeton University Press; 2005.

Google Scholar 

Kerg G, Mittal S, Rolnick D, Bengio Y, Richards B, Lajoie G. On neural architecture inductive biases for relational tasks. 2022. arXiv:2206.05056 [cs.NE]. https://doi.org/10.48550/arXiv.2206.05056.

Bender EM, Gebru T, McMillan-Major A, Shmitchell S. On the dangers of stochastic parrots: can language models be too big?. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT '21). 2021;610–623. https://doi.org/10.1145/3442188.3445922.

Chen MX, Firat O, Bapna A, Johnson M, Macherey W, Foster GF, Jones L, Parmar N, Schuster M, Chen Z, Wu Y, Hughes M. The best of both worlds: combining recent advances in neural machine translation, Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia (Long Papers). 2018;76–86.

Liu X, Duh K, Liu L, Gao J. Very deep transformers for neural machine translation. 2020. arXiv:2008.07772 [cs.CL].

Heaven WD. OpenAI’s new language generator GPT-3 is shockingly good—and completely mindless. MIT Technol Rev. 2020. https://www.technologyreview.com/2020/07/20/1005454/openai-machine-learning-language-generator-gpt-3-nlp/.

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, va den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529(7587):484–9. https://doi.org/10.1038/nature16961.

Article  Google Scholar 

Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, van den Driessche G, Graepel T, Hassabis D. Mastering the game of Go without human knowledge. Nature. 2017;550(7676):354–9. https://doi.org/10.1038/nature24270.

Article  Google Scholar 

Girshick, R.B. (2015) Fast R-CNN, 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448.

OpenAI (2022) ChatGPT: Optimizing language models for dialogue. https://openai.com/blog/chatgpt/.

Ramesh A, Pavlov M, Goh G, Gray S, Voss C, Radford A, Chen M, Sutskever I. Zero-shot text-to-image generation. 2021. https://arxiv.org/abs/2102.12092v2.

Minai AA, Perdoor M, Byadarhaly KV, Vasa S, Iyer LR. A synergistic view of autonomous cognitive systems. Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN’2010). 2010;498–505.

Braitenberg V. Vehicles: experiments in synthetic psychology. Cambridge, MA: MIT Press; 1984.

Google Scholar 

Carlson JM, Doyle J. Complexity and robustness. PNAS. 2002;99(supp. 1):2538–45.

Article  Google Scholar 

Tanaka R, Doyle J. Scale-rich metabolic networks: background and introduction. 2004. https://arxiv.org/abs/q-bio/0410009.

Zador AM. A critique of pure learning and what artificial neural networks can learn from animal brains. Nat Commun. 2019;10:3770.

Article  Google Scholar 

Latash ML. Understanding and synergy: a single concept at different levels of analysis?. Front Syst Neurosci. 2021;15. https://doi-org.uc.idm.oclc.org/10.3389/fnsys.2021.735406.

Latash ML. Motor synergies and the equilibrium-point hypothesis. Mot Control. 2010;14(3):294–322. https://doi.org/10.1123/mcj.14.3.294.

Article  MathSciNet  Google Scholar 

Riley MA, Kuznetsov N, Bonnette S. State-, parameter-, and graph-dynamics: constraints and the distillation of postural control systems. Science & Motricité. 2011;74:5–18. https://doi.org/10.1051/sm/2011117.

Article  Google Scholar 

Dobzhansky T. Nothing in biology makes sense except in the light of evolution. American Biology Teacher. 1973;35(3):125–9. https://doi.org/10.1093/icb/4.4.443.

Article  Google Scholar 

Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962;160:106–54.

Article  Google Scholar 

Hubel DH, Wiesel TN. Brain and visual perception. New York: Oxford Press; 2005.

Google Scholar 

Fogel LJ, Owens AJ, Walsh MJ. Artificial intelligence through simulated evolution. NY: John Wiley; 1966.

MATH  Google Scholar 

Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press; 1975.

MATH  Google Scholar 

Goldberg D. Genetic algorithms in search, optimization and machine learning. Addison-Wesley Professional. 1989.

Stanley KO, Miikkulainen R. Evolving neural networks through augmenting topologies. Evol Comput. 2002;10(2):99–127. https://doi.org/10.1162/106365602320169811.

Article  Google Scholar 

Stanley K, Miikkulainen R. A taxonomy for artificial embryogeny. Artif Life. 2003;9(2):93–130.

Article  Google Scholar 

Clune J, Beckmann BE, Ofria C, Pennock RT. Evolving coordinated quadruped gaits with the HyperNEAT generative encoding. Proc IEEE Cong Evol Comp. 2009;2764–2771.

Sims K. Evolving virtual creatures. Proceedings of SIGGRAPH '94. 1994;15–22.

Sims K. Evolving 3D morphology and behavior by competition. Artif Life. 1994;1:353–72. https://doi.org/10.1162/artl.1994.1.4.353.

Article  Google Scholar 

Rieffel J, Pollack J. An endosymbiotic model for modular acquisition in stochastic developmental systems. Proceedings of the Tenth International Conference on the Simulation and Synthesis of Living Systems (ALIFE X). 2006.

Kirschner MW, Gerhart JC. The plausibility of life: resolving Darwin’s dilemma. Yale University Press; 2005.

Google Scholar 

Gerhart J, Kirschner M. The theory of facilitated variation. PNAS. 2007;104(Supp. 1):8582–9.

Article  Google Scholar 

Kimura M. The neutral theory of molecular evolution. Press: Cambridge Univ; 1983.

Book  Google Scholar 

Huneman P. Neutral spaces and topological explanations in evolutionary biology: lessons from some landscapes and mappings. Philosophy of Science. 2018;85(5):969–83. https://doi.org/10.1086/699759.

Article  Google Scholar 

Kauffman SA. The origins of order: self-organization and selection in evolution. Oxford University Press; 1993.

Google Scholar 

Siebert BA, Hall CL, Gleeson JP, Asllani M. Role of modularity in self-organization dynamics in biological networks. Phys Rev E. 2020;102:052306. https://doi.org/10.1103/PhysRevE.102.052306.

留言 (0)

沒有登入
gif