SRFFNet: Self-refine, Fusion and Feedback for Salient Object Detection

Wang W, Lai Q, Fu H, Shen J, Ling H, Yang R. Salient object detection in the deep learning era: An in-depth survey. IEEE Trans Patt Anal Machine Intell 2021.

Cheng MM, Mitra NJ, Huang X, Torr PH, Hu SM. Global contrast based salient region detection. IEEE Trans Patt Anal Mach Intell. 2014;37(3):569–82.

Article  Google Scholar 

Yan Q, Xu L, Shi J, Jia J. Hierarchical saliency detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2013;1155–62.

Jiang Z, Davis LS. Submodular salient region detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2013;2043:5.

Hou Q, Cheng MM, Hu X, Borji A, Tu Z, Torr PH. Deeply supervised salient object detection with short connections. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017;3203–12.

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016;770–8.

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint http://arxiv.org/abs/1409.1556. 2014.

Liu S, Huang D, et al. Receptive field block net for accurate and fast object detection. In: Proceedings of the European Conference on Computer Vision (ECCV); 2018;385–400.

Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Patt Anal Mach Intell. 1998;20(11):1254–9.

Article  Google Scholar 

Wang L, Lu H, Ruan X, Yang MH. Deep networks for saliency detection via local estimation and global search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2015;3183–92.

Li G, Yu Y. Visual saliency based on multiscale deep features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2015;5455–63.

Lee G, Tai YW, Kim J. Deep saliency with encoded low level distance map and high level features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016;660–8.

Chen T, Lin L, Liu L, Luo X, Li X. Disc: Deep image saliency computing via progressive representation learning. IEEE Trans Neur Netw Learn Syst. 2016;27(6):1135–49.

Article  MathSciNet  Google Scholar 

Liu N, Han J. Dhsnet: Deep hierarchical saliency network for salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016;678–86.

Deng Z, Hu X, Zhu L, Xu X, Qin J, Han G, et al. R3net: Recurrent residual refinement network for saliency detection. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press. 2018;684–90.

Liu JJ, Hou Q, Cheng MM, Feng J, Jiang J. A simple pooling-based design for real-time salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019;3917–26.

Chen T, Hu X, Xiao J, Zhang G, Wang S. BINet: Bidirectional interactive network for salient object detection. Neurocomputing. 2021;465:490–502.

Article  Google Scholar 

Qin X, Zhang Z, Huang C, Gao C, Dehghan M, Jagersand M. Basnet: Boundary-aware salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019;7479–89.

Liu N, Han J, Yang MH. Picanet: Learning pixel-wise contextual attention for saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018;3089–98.

Chen Z, Xu Q, Cong R, Huang Q. Global context-aware progressive aggregation network for salient object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2020;(34);10599–606.

Zhao JX, Liu JJ, Fan DP, Cao Y, Yang J, Cheng MM. EGNet: Edge guidance network for salient object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019;8779–88.

Zhao X, Pang Y, Zhang L, Lu H, Zhang L. Suppress and balance: A simple gated network for salient object detection. In: European Conference on Computer Vision. Springer. 2020;35–51.

Feng M, Lu H, Ding E. Attentive feedback network for boundary-aware salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2019;1623-32.

Chen T, Hu X, Xiao J, Zhang G. BPFINet: Boundary-aware progressive feature integration network for salient object detection. Neurocomputing. 2021;451:152–66.

Article  Google Scholar 

Pang Y, Zhao X, Zhang L, Lu H. Multi-scale interactive network for salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2020;9413–22.

Zhang H, Lan X, Wan L, Yang C, Zhou X, Zheng N. RPRG: Toward real-time robotic perception reasoning and grasping with one multi-task convolutional neural network. 2018;1–7 arXiv preprint https://doi.org/10.48550/arXiv.1809.07081.

Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI Conference on Artificial Intelligence. 2017.

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016;2818–26.

Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions. arXiv preprint http://arxiv.org/abs/1511.07122arXiv:1511.07122. 2015.

Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems. 2012;25:1097–105.

Google Scholar 

Wei J, Wang S, Huang Q. F\(^3\)Net: Fusion, Feedback and Focus for Salient Object Detection. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2020(24);12321–8.

Yang C, Zhang L, Lu H, Ruan X, Yang MH. Saliency detection via graph-based manifold ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2013;3166–73.

Li Y, Hou X, Koch C, Rehg JM, Yuille AL. The secrets of salient object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2014;280–7.

Wang L, Lu H, Wang Y, Feng M, Wang D, Yin B, et al. Learning to detect salient objects with image-level supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017;136–45.

Wu R, Feng M, Guan W, Wang D, Lu H, Ding E. A mutual learning method for salient object detection with intertwined multi-supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019;8150–9.

Perazzi F, Krähenbühl P, Pritch Y, Hornung A, Saliency filters: Contrast based filtering for salient region detection. In,. IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 2012;733–40.

Margolin R, Zelnik-Manor L, Tal A. How to evaluate foreground maps? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2014;248–55.

Fan DP, Gong C, Cao Y, Ren B, Cheng MM, Borji A. Enhanced-alignment measure for binary foreground map evaluation. arXiv preprint http://arxiv.org/abs/1805.10421arXiv:1805.10421. 2018.

Achanta R, Hemami S, Estrada F, Susstrunk S, Frequency-tuned salient region detection. In,. IEEE conference on computer vision and pattern recognition. IEEE. 2009;1597–604.

Bottou L. Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’2010. Springer; 2010;177–86.

Mohammadi S, Noori M, Bahri A, Majelan SG, Havaei M. CAGNet: Content-aware guidance for salient object detection. Pattern Recognition. 2020;103:107303.

Article  Google Scholar 

Liu JJ, Hou Q, Cheng MM. Dynamic feature integration for simultaneous detection of salient object, edge, and skeleton. IEEE Transactions on Image Processing. 2020;29:8652–67.

Article  MATH  Google Scholar 

留言 (0)

沒有登入
gif