Dysfunction in parkin aggravates inflammatory bone erosion by reinforcing osteoclast activity

Gnadinger M, Mellinghoff HU, Kaelin-Lang A. Parkinson’s disease and the bones. Swiss Med Wkly. 2011;141:w13154. (Epub 2011/02/18).

Article  CAS  PubMed  Google Scholar 

Raglione LM, Sorbi S, Nacmias B. Osteoporosis and Parkinson’s disease. Clin Cases Mineral Bone Metab. 2011;8(3):16–8 (Epub 2012/03/31).

Google Scholar 

Invernizzi M, Carda S, Viscontini GS, Cisari C. Osteoporosis in Parkinson’s disease. Parkinsonism Relat Disord. 2009;15(5):339–46. https://doi.org/10.1016/j.parkreldis.2009.02.009. (Epub 2009/04/07).

Article  PubMed  Google Scholar 

Ishizaki F, Harada T, Katayama S, Abe H, Nakamura S. Relationship between osteopenia and clinical characteristics of Parkinson’s disease. Mov Disord. 1993;8(4):507–11. https://doi.org/10.1002/mds.870080416. (Epub 1993/10/01).

Article  CAS  PubMed  Google Scholar 

Ishizaki F, Harada T, Katayama S, Abe H, Nakamura S. Bone changes in Parkinson’s disease. No to shinkei. 1993;45(8):719–24 (Epub 1993/08/01).

CAS  PubMed  Google Scholar 

Abou-Raya S, Helmii M, Abou-Raya A. Bone and mineral metabolism in older adults with Parkinson’s disease. Age Ageing. 2009;38(6):675–80. https://doi.org/10.1093/ageing/afp137. (Epub 2009/08/18).

Article  PubMed  Google Scholar 

Kamanli A, Ardicoglu O, Ozgocmen S, Yoldas TK. Bone mineral density in patients with Parkinson’s disease. Aging Clin Exp Res. 2008;20(3):277–9 (Epub 2008/07/03).

Article  PubMed  Google Scholar 

Martin I, Dawson VL, Dawson TM. Recent advances in the genetics of Parkinson’s disease. Annu Rev Genom Hum Genet. 2011;12:301–25. https://doi.org/10.1146/annurev-genom-082410-101440. (Epub 2011/06/07).

Article  CAS  Google Scholar 

Cookson MR. Parkinsonism due to mutations in Pink1, Parkin, and Dj-1 and oxidative stress and mitochondrial pathways. Cold Spring Harb Perspect Med. 2012;2(9):a009415. https://doi.org/10.1101/cshperspect.a009415. (Epub 2012/09/07).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392(6676):605–8. https://doi.org/10.1038/33416. (Epub 1998/04/29).

Article  CAS  PubMed  Google Scholar 

Shen J. Protein kinases linked to the pathogenesis of Parkinson’s disease. Neuron. 2004;44(4):575–7. https://doi.org/10.1016/j.neuron.2004.11.008. (Epub 2004/11/16).

Article  CAS  PubMed  Google Scholar 

Gouspillou G, Godin R, Piquereau J, Picard M, Mofarrahi M, Mathew J, et al. Protective role of parkin in skeletal muscle contractile and mitochondrial function. J Physiol. 2018;596(13):2565–79. https://doi.org/10.1113/jp275604. (Epub 2018/04/24).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarraf SA, Sideris DP, Giagtzoglou N, Ni L, Kankel MW, Sen A, et al. Pink1/Parkin influences cell cycle by sequestering Tbk1 at damaged mitochondria, inhibiting mitosis. Cell Rep. 2019;29(1):225–35.e5. https://doi.org/10.1016/j.celrep.2019.08.085.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem. 2004;279(18):18614–22. https://doi.org/10.1074/jbc.M401135200. (Epub 2004/02/27).

Article  CAS  PubMed  Google Scholar 

Pesah Y, Pham T, Burgess H, Middlebrooks B, Verstreken P, Zhou Y, et al. Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development. 2004;131(9):2183–94. https://doi.org/10.1242/dev.01095. (Epub 2004/04/10).

Article  CAS  PubMed  Google Scholar 

Shiau MY, Lee PS, Huang YJ, Yang CP, Hsiao CW, Chang KY, et al. Role of Parl-Pink1-Parkin pathway in adipocyte differentiation. Metab Clin Exp. 2017;72:1–17. https://doi.org/10.1016/j.metabol.2017.03.010. (Epub 2017/06/24).

Article  CAS  PubMed  Google Scholar 

Xin D, Gu H, Liu E, Sun Q. Parkin negatively regulates the antiviral signaling pathway by targeting Traf3 for degradation. J Biol Chem. 2018;293(31):11996–2010. https://doi.org/10.1074/jbc.RA117.001201. (Epub 2018/06/16).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wahabi K, Perwez A, Rizvi MA. Parkin in Parkinson’s disease and cancer: a double-edged sword. Mol Neurobiol. 2018;55(8):6788–800. https://doi.org/10.1007/s12035-018-0879-1. (Epub 2018/01/20).

Article  CAS  PubMed  Google Scholar 

Abdi IY, Ghanem SS, El-Agnaf OM. Immune-related biomarkers for Parkinson’s disease. Neurobiol Dis. 2022;170:105771. https://doi.org/10.1016/j.nbd.2022.105771. (Epub 2022/05/23).

Article  CAS  PubMed  Google Scholar 

Stojakovic A, Paz-Filho G, Arcos-Burgos M, Licinio J, Wong ML, Mastronardi CA. Role of the Il-1 pathway in dopaminergic neurodegeneration and decreased voluntary movement. Mol Neurobiol. 2017;54(6):4486–95. https://doi.org/10.1007/s12035-016-9988-x. (Epub 2016/07/01).

Article  CAS  PubMed  Google Scholar 

Yan J, Fu Q, Cheng L, Zhai M, Wu W, Huang L, et al. Inflammatory response in Parkinson’s disease (Review). Mol Med Rep. 2014;10(5):2223–33. https://doi.org/10.3892/mmr.2014.2563. (Epub 2014/09/13).

Article  CAS  PubMed  Google Scholar 

Dewhirst FE, Stashenko PP, Mole JE, Tsurumachi T. Purification and partial sequence of human osteoclast-activating factor: identity with interleukin 1 Beta. J Immunol. 1985;135(4):2562–8 (Epub 1985/10/01).

Article  CAS  PubMed  Google Scholar 

Lee YM, Fujikado N, Manaka H, Yasuda H, Iwakura Y. Il-1 plays an important role in the bone metabolism under physiological conditions. Int Immunol. 2010;22(10):805–16. https://doi.org/10.1093/intimm/dxq431. (Epub 2010/08/04).

Article  CAS  PubMed  Google Scholar 

Lee K, Seo I, Choi MH, Jeong D. Roles of mitogen-activated protein kinases in osteoclast biology. Int J Mol Sci. 2018;19(10):3004. https://doi.org/10.3390/ijms19103004. (Epub 2018/10/01).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao Y, Jansen ID, Sprangers S, Stap J, Leenen PJ, Everts V, et al. Il-1β differently stimulates proliferation and multinucleation of distinct mouse bone marrow osteoclast precursor subsets. J Leukoc Biol. 2016;100(3):513–23. https://doi.org/10.1189/jlb.1A1215-543R. (Epub 2016/03/08).

Article  CAS  PubMed  Google Scholar 

Miyazaki T, Katagiri H, Kanegae Y, Takayanagi H, Sawada Y, Yamamoto A, et al. Reciprocal role of Erk and Nf-Kappab pathways in survival and activation of osteoclasts. J Cell Biol. 2000;148(2):333–42. https://doi.org/10.1083/jcb.148.2.333.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schett G, Gravallese E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol. 2012;8(11):656–64. https://doi.org/10.1038/nrrheum.2012.153. (Epub 2012/09/26).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tanaka Y, Nakayamada S, Okada Y. Osteoblasts and osteoclasts in bone remodeling and inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(3):325–8 (Epub 2005/08/17).

Article  CAS  PubMed  Google Scholar 

Shaw AT, Gravallese EM. Mediators of inflammation and bone remodeling in rheumatic disease. Semin Cell Dev Biol. 2016;49:2–10. https://doi.org/10.1016/j.semcdb.2015.10.013. (Epub 2015/10/21).

Article  CAS  PubMed  Google Scholar 

Arend WP, Dayer JM. Inhibition of the production and effects of Interleukin-1 and tumor necrosis factor alpha in rheumatoid arthritis. Arthritis Rheum. 1995;38(2):151–60. https://doi.org/10.1002/art.1780380202. (Epub 1995/02/01).

Article  CAS  PubMed  Google Scholar 

Iwakura Y. Roles of Il-1 in the development of rheumatoid arthritis: consideration from mouse models. Cytokine Growth Factor Rev. 2002;13(4–5):341–55 (Epub 2002/09/11).

Article  CAS  PubMed  Google Scholar 

Padhan P, Danda D. Parkinsonism mimicking rheumatoid arthritis. J Rhuematol. 2010;37(6):1266. https://doi.org/10.3899/jrheum.091473. (Epub 2010/06/03).

Article  Google Scholar 

Shu X, Wang G, Lu X, Xie Y. Rheumatoid-like deformities in Parkinson’s disease with 1-year follow-up: case report and literature review. Rheumatol Int. 2010;30(11):1493–7. https://doi.org/10.1007/s00296-009-1094-1. (Epub 2009/09/04).

Article  PubMed  Google Scholar 

Jurdic P, Saltel F, Chabadel A, Destaing O. Podosome and sealing zone: specificity of the osteoclast model. Eur J Cell Biol. 2006;85(3–4):195–202. https://doi.org/10.1016/j.ejcb.2005.09.008. (Epub 2006/03/21).

Article  CAS  PubMed  Google Scholar 

Okumura S, Mizoguchi T, Sato N, Yamaki M, Kobayashi Y, Yamauchi H, et al. Coordination of microtubules and the actin cytoskeleton is important in osteoclast function, but calcitonin disrupts sealing zones without affecting microtubule networks. Bone. 2006;39(4):684–93. https://doi.org/10.1016/j.bone.2006.04.010. (Epub 2006/06/16).

Article  CAS  PubMed  Google Scholar 

Destaing O, Saltel F, Gilquin B, Chabadel A, Khochbin S, Ory S, et al. A novel Rho-Mdia2-Hdac6 pathway controls podosome patterning through microtubule acetylation in osteoclasts. J Cell Sci. 2005;118(Pt 13):2901–11. https://doi.org/10.1242/jcs.02425. (Epub 2005/06/25).

留言 (0)

沒有登入
gif