Dimethyl itaconate is effective in host-directed antimicrobial responses against mycobacterial infections through multifaceted innate immune pathways

WHO 2021. Global tuberculosis report 2021, WHO.

Espinal MA, Laszlo A, Simonsen L, Boulahbal F, Kim SJ, Reniero A, et al. Global trends in resistance to antituberculosis drugs. World Health Organization-international union against tuberculosis and lung disease working group on anti-tuberculosis drug resistance surveillance. N Engl J Med. 2001;344(17):1294–303.

Article  CAS  PubMed  Google Scholar 

Singh R, Dwivedi SP, Gaharwar US, Meena R, Rajamani P, Prasad T. Recent updates on drug resistance in Mycobacterium tuberculosis. J Appl Microbiol. 2020;128(6):1547–67. https://doi.org/10.1111/jam.14478.

Article  CAS  PubMed  Google Scholar 

Nathanson E, Nunn P, Uplekar M, Floyd K, Jaramillo E, Lonnroth K, et al. MDR tuberculosis—critical steps for prevention and control. N Engl J Med. 2010;363(11):1050–8.

Article  CAS  PubMed  Google Scholar 

Sulis G, Pai M. Isoniazid-resistant tuberculosis: a problem we can no longer ignore. PLoS Med. 2020;17(1): e1003023. https://doi.org/10.1371/journal.pmed.1003023.

Article  PubMed  PubMed Central  Google Scholar 

Chai J, Han X, Mei Q, Liu T, Walline JH, Xu J, et al. Clinical characteristics and mortality of non-tuberculous mycobacterial infection in immunocompromised vs. immunocompetent hosts. Front Med. 2022;9: 884446. https://doi.org/10.3389/fmed.2022.884446.

Article  Google Scholar 

Gopalaswamy R, Shanmugam S, Mondal R, Subbian S. Of tuberculosis and non-tuberculous mycobacterial infections—a comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci. 2020;27(1):74. https://doi.org/10.1186/s12929-020-00667-6.

Article  PubMed  PubMed Central  Google Scholar 

Shamaei M, Mirsaeidi M. Nontuberculous mycobacteria, macrophages, and host innate immune response. Infect Immun. 2021;89(8): e0081220. https://doi.org/10.1128/IAI.00812-20.

Article  PubMed  Google Scholar 

Dahl VN, Molhave M, Floe A, van Ingen PJ, Schon PT, Lillebaek PT, et al. Global trends of pulmonary infections with nontuberculous mycobacteria: a systematic review. Int J Infect Dis. 2022. https://doi.org/10.1016/j.ijid.2022.10.013.

Article  PubMed  PubMed Central  Google Scholar 

Tissot A, Thomas MF, Corris PA, Brodlie M. Nontuberculous mycobacteria infection and lung transplantation in cystic fibrosis: a worldwide survey of clinical practice. BMC Pulm Med. 2018;18(1):86.

Article  PubMed  PubMed Central  Google Scholar 

Gill LI, Dominic C, Tiberi S. Atypical mycobacterial infections—management and when to treat. Curr Opin Pulm Med. 2021;27(3):216–23. https://doi.org/10.1097/MCP.0000000000000764.

Article  CAS  PubMed  Google Scholar 

Abate G, Stapleton JT, Rouphael N, Creech B, Stout JE, El Sahly HM, et al. Variability in the management of adults with pulmonary nontuberculous mycobacterial disease. Clin Infect Dis. 2021;72(7):1127–37.

Article  CAS  PubMed  Google Scholar 

Thornton CS, Mellett M, Jarand J, Barss L, Field SK, Fisher DA. The respiratory microbiome and nontuberculous mycobacteria: an emerging concern in human health. Eur Respir Rev. 2021;30(160): 200299.

Article  PubMed  PubMed Central  Google Scholar 

Llibre A, Dedicoat M, Burel JG, Demangel C, O’Shea MK, Mauro C. Host immune-metabolic adaptations upon mycobacterial infections and associated co-morbidities. Front Immunol. 2021;12: 747387. https://doi.org/10.3389/fimmu.2021.747387.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi L, Jiang Q, Bushkin Y, Subbian S, Tyagi S. Biphasic dynamics of macrophage immunometabolism during Mycobacterium tuberculosis infection. MBio. 2019;10(2):e02550-18.

Article  PubMed  PubMed Central  Google Scholar 

Paik S, Jo EK. An interplay between autophagy and immunometabolism for host defense against mycobacterial infection. Front Immunol. 2020;11: 603951. https://doi.org/10.3389/fimmu.2020.603951.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci USA. 2013;110(19):7820–5. https://doi.org/10.1073/pnas.1218599110.

Article  PubMed  PubMed Central  Google Scholar 

Kwai BXC, Collins AJ, Middleditch MJ, Sperry J, Bashiri G, Leung IKH. Itaconate is a covalent inhibitor of the Mycobacterium tuberculosis isocitrate lyase. RSC Med Chem. 2021;12(1):57–61. https://doi.org/10.1039/d0md00301h.

Article  CAS  PubMed  Google Scholar 

Nair S, Huynh JP, Lampropoulou V, Loginicheva E, Esaulova E, Gounder AP, et al. Irg1 expression in myeloid cells prevents immunopathology during M. tuberculosis infection. J Exp Med. 2018;215(4):1035–45. https://doi.org/10.1084/jem.20180118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gidon A, Louet C, Rost LM, Bruheim P, Flo TH. The tumor necrosis factor alpha and interleukin 6 auto-paracrine signaling loop controls Mycobacterium avium infection via induction of IRF1/IRG1 in human primary macrophages. MBio. 2021;12(5): e0212121. https://doi.org/10.1128/mBio.02121-21.

Article  PubMed  Google Scholar 

Zhao C, Jiang P, He Z, Yuan X, Guo J, Li Y, et al. Dimethyl itaconate protects against lippolysacchride-induced mastitis in mice by activating MAPKs and Nrf2 and inhibiting NF-kappaB signaling pathways. Microb Pathog. 2019;133: 103541. https://doi.org/10.1016/j.micpath.2019.05.024.

Article  CAS  PubMed  Google Scholar 

Kuo PC, Weng WT, Scofield BA, Paraiso HC, Brown DA, Wang PY, et al. Dimethyl itaconate, an itaconate derivative, exhibits immunomodulatory effects on neuroinflammation in experimental autoimmune encephalomyelitis. J Neuroinflamm. 2020;17(1):138.

Article  CAS  Google Scholar 

Zhang S, Jiao Y, Li C, Liang X, Jia H, Nie Z, et al. Dimethyl itaconate alleviates the inflammatory responses of macrophages in sepsis. Inflammation. 2021;44(2):549–57. https://doi.org/10.1007/s10753-020-01352-4.

Article  CAS  PubMed  Google Scholar 

Bambouskova M, Gorvel L, Lampropoulou V, Sergushichev A, Loginicheva E, Johnson K, et al. Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF3 inflammatory axis. Nature. 2018;556(7702):501–4. https://doi.org/10.1038/s41586-018-0052-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swain A, Bambouskova M, Kim H, Andhey PS, Duncan D, Auclair K, et al. Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type I interferon regulation in macrophages. Nat Metab. 2020;2(7):594–602. https://doi.org/10.1038/s42255-020-0210-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

ElAzzouny M, Tom CT, Evans CR, Olson LL, Tanga MJ, Gallagher KA, et al. Dimethyl itaconate is not metabolized into itaconate intracellularly. J Biol Chem. 2017;292(12):4766–9. https://doi.org/10.1074/jbc.C117.775270.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang CS, Kim JJ, Lee HM, Jin HS, Lee SH, Park JH, et al. The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy. Autophagy. 2014;10(5):785–802. https://doi.org/10.4161/auto.28072.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim JK, Kim YS, Lee HM, Jin HS, Neupane C, Kim S, et al. GABAergic signaling linked to autophagy enhances host protection against intracellular bacterial infections. Nat Commun. 2018;9(1):4184.

Article  PubMed  PubMed Central  Google Scholar 

Woods GL, Brown-Elliott BA, Conville PS, Desmond EP, Hall GS, Lin G, et al. Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes. Wayne: Clinical and laboratory standards institute; 2011.

Google Scholar 

Munoz-Elias EJ, McKinney JD. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med. 2005;11(6):638–44. https://doi.org/10.1038/nm1252.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McKinney JD, HonerzuBentrup K, Munoz-Elias EJ, Miczak A, Chen B, Chan WT, et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature. 2000;406(6797):735–8. https://doi.org/10.1038/35021074.

Article  CAS  PubMed  Google Scholar 

Fahnoe KC, Flanagan ME, Gibson G, Shanmugasundaram V, Che Y, Tomaras AP. Non-traditional antibacterial screening approaches for the identification of novel inhibitors of the glyoxylate shunt in gram-negative pathogens. PLoS ONE. 2012;7(12): e51732. https://doi.org/10.1371/journal.pone.0051732.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahn S, Jung J, Jang IA, Madsen EL, Park W. Role of glyoxylate shunt in oxidative stress response. J Biol Chem. 2016;291(22):11928–38. https://doi.org/10.1074/jbc.M115.708149.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ko EM, Kim JY, Lee S, Kim S, Hwang J, Oh JI. Regulation of the icl1 gene encoding the major isocitrate lyase in Mycobacterium smegmatis. J Bacteriol. 2021;203(23): e0040221. https://doi.org/10.1128/JB.00402-21.

Article  PubMed  Google Scholar 

Van Dis E, Fox DM, Morrison HM, Fines DM, Babirye JP, McCann LH, et al. IFN-gamma-independent control of M. tuberculosis requires CD4 T cell-derived GM-CSF and activation of HIF-1alpha. PLoS Pathog. 2022;18(7): e1010721. https://doi.org/10.1371/journal.ppat.1010721.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif