Deficits in mitochondrial TCA cycle and OXPHOS precede rod photoreceptor degeneration during chronic HIF activation

Wong-Riley M. Energy metabolism of the visual system. Eye Brain. 2010;2:99–116. https://doi.org/10.2147/EB.S9078.

Article  PubMed  PubMed Central  Google Scholar 

Medrano CJ, Fox DA. Oxygen consumption in the rat outer and inner retina: light- and pharmacologically-induced inhibition. Exp Eye Res. 1995;61(3):273–84. https://doi.org/10.1016/s0014-4835(05)80122-8.

Article  CAS  PubMed  Google Scholar 

Wang L, Kondo M, Bill A. Glucose metabolism in cat outer retina. Effects of light and hyperoxia. Investig Ophthalmol Vis Sci. 1997;38(1):48–55.

CAS  Google Scholar 

Wang L, Törnquist P, Bill A. Glucose metabolism in pig outer retina in light and darkness. Acta Physiol Scand. 1997;160(1):75–81. https://doi.org/10.1046/j.1365-201X.1997.00030.x.

Article  CAS  PubMed  Google Scholar 

Yu DY, Cringle SJ. Retinal degeneration and local oxygen metabolism. Exp Eye Res. 2005;80(6):745–51. https://doi.org/10.1016/j.exer.2005.01.018.

Article  CAS  PubMed  Google Scholar 

Meschede IP, Ovenden NC, Seabra MC, Futter CE, Votruba M, Cheetham ME, et al. Symmetric arrangement of mitochondria:plasma membrane contacts between adjacent photoreceptor cells regulated by Opa1. Proc Natl Acad Sci. 2020;117(27):15684–93. https://doi.org/10.1073/pnas.2000304117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okawa H, Sampath AP, Laughlin SB, Fain GL. ATP Consumption by Mammalian Rod Photoreceptors in Darkness and in Light. Current Biology. 2008;18(24):1917–21. https://doi.org/10.1016/j.cub.2008.10.029.

Article  CAS  PubMed  Google Scholar 

Ingram NT, Fain GL, Sampath AP. Elevated energy requirement of cone photoreceptors. Proc Natl Acad Sci. 2020;117(32):19599–603. https://doi.org/10.1073/pnas.2001776117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warburg O. The Metabolism of Carcinoma Cells. The Journal of Cancer Research. 1925;9(1):148–63.

Article  CAS  Google Scholar 

Cohen LH, Noell WK. Glucose Catabolism of Rabbit Retina Before and After Development of Visual Function. J Neurochem. 1960;5(3):253–76. https://doi.org/10.1111/j.1471-4159.1960.tb13363.x.

Article  CAS  PubMed  Google Scholar 

Winkler BS. Glycolytic and oxidative metabolism in relation to retinal function. J Gen Physiol. 1981;77(6):667–92. https://doi.org/10.1085/jgp.77.6.667.

Article  CAS  PubMed  Google Scholar 

Chinchore Y, Begaj T, Wu D, Drokhlyansky E, Cepko CL. Glycolytic reliance promotes anabolism in photoreceptors. eLife. 2017;6:e25946. https://doi.org/10.7554/eLife.25946.

Article  PubMed  PubMed Central  Google Scholar 

Heiden MGV, Cantley LC, Thompson CB. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science. 2009;324(5930):1029–33. https://doi.org/10.1126/science.1160809.

Article  CAS  Google Scholar 

Young RW. The renewal of photoreceptor cell outer segments. J Cell Biol. 1967;33(1):61–72. https://doi.org/10.1083/jcb.33.1.61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Young RW. The renewal of rod and cone outer segments in the rhesus monkey. J Cell Biol. 1971;49(2):303–18. https://doi.org/10.1083/jcb.49.2.303.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hurley JB. Retina Metabolism and Metabolism in the Pigmented Epithelium: A Busy Intersection. Ann Rev Vis Sci. 2021;7(1):665–92. https://doi.org/10.1146/annurev-vision-100419-115156.

Article  Google Scholar 

Nolan ND, Caruso SM, Cui X, Tsang SH. Renormalization of metabolic coupling treats age-related degenerative disorders: an oxidative RPE niche fuels the more glycolytic photoreceptors. Eye. 2022;36(2):278–83. https://doi.org/10.1038/s41433-021-01726-4.

Article  PubMed  PubMed Central  Google Scholar 

Kanow MA, Giarmarco MM, Jankowski CS, Tsantilas K, Engel AL, Du J, et al. Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye. eLife. 2017;6:e28899. https://doi.org/10.7554/eLife.28899.

Article  PubMed  PubMed Central  Google Scholar 

Lin JB, Tsubota K, Apte RS. A glimpse at the aging eye. NPJ Aging Mech Dis. 2016;2(1):1–7. https://doi.org/10.1038/npjamd.2016.3.

Article  CAS  Google Scholar 

Lam KCA, Chan ST, Chan HLH, Chan B. The effect of age on ocular blood supply determined by pulsatile ocular blood flow and color Doppler ultrasonography. Am J Optom Physiol Optic. 2003;80(4):305–11. https://doi.org/10.1097/00006324-200304000-00008.

Article  Google Scholar 

Curcio CA, Millican CL, Bailey T, Kruth HS. Accumulation of cholesterol with age in human Bruch’s membrane. Investig Ophthalmol Vis Sci. 2001;42(1):265–74.

CAS  Google Scholar 

Wassell J, Davies S, Bardsley W, Boulton M. The photoreactivity of the retinal age pigment lipofuscin. J Biol Chem. 1999;274(34):23828–32. https://doi.org/10.1074/jbc.274.34.23828.

Article  CAS  PubMed  Google Scholar 

Caprara C, Grimm C. From oxygen to erythropoietin: Relevance of hypoxia for retinal development, health and disease. Prog Retin Eye Res. 2012;31(1):89–119. https://doi.org/10.1016/j.preteyeres.2011.11.003.

Article  CAS  PubMed  Google Scholar 

van Vliet T, Casciaro F, Demaria M. To breathe or not to breathe: Understanding how oxygen sensing contributes to age-related phenotypes. Ageing Res Rev. 2021;67:101267. https://doi.org/10.1016/j.arr.2021.101267.

Article  CAS  PubMed  Google Scholar 

Dimopoulos IS, Freund PR, Redel T, Dornstauder B, Gilmour G, Sauvé Y. Changes in rod and cone-driven oscillatory potentials in the aging human retina. Investig Ophthalmol Vis Sci. 2014;55(8):5058–73. https://doi.org/10.1167/iovs.14-14219.

Article  Google Scholar 

Weleber RG. The effect of age on human cone and rod ganzfeld electroretinograms. Investig Ophthalmol Vis Sci. 1981;20(3):392–9.

CAS  Google Scholar 

Kaelin WG, Ratcliffe PJ. Oxygen Sensing by Metazoans: The Central Role of the HIF Hydroxylase Pathway. Mol Cell. 2008;30(4):393–402. https://doi.org/10.1016/j.molcel.2008.04.009.

Article  CAS  PubMed  Google Scholar 

Mammadzada P, Corredoira PM, André H. The role of hypoxia-inducible factors in neovascular age-related macular degeneration: a gene therapy perspective. Cell Mol Life Sci. 2020;77(5):819–33. https://doi.org/10.1007/s00018-019-03422-9.

Article  CAS  PubMed  Google Scholar 

Maynard MA, Ohh M. Von Hippel-Lindau tumor suppressor protein and hypoxia-inducible factor in kidney cancer. Am J Nephrol. 2004;24(1):1–13. https://doi.org/10.1159/000075346.

Article  CAS  PubMed  Google Scholar 

Lange C, Heynen SR, Tanimoto N, Thiersch M, Le YZ, Meneau I, et al. Normoxic Activation of Hypoxia-Inducible Factors in Photoreceptors Provides Transient Protection against Light-Induced Retinal Degeneration. Investig Ophthalmol Vis Sci. 2011;52(8):5872–80. https://doi.org/10.1167/iovs.11-7204.

Article  Google Scholar 

Barben M, Ail D, Storti F, Klee K, Schori C, Samardzija M, et al. Hif1a inactivation rescues photoreceptor degeneration induced by a chronic hypoxia-like stress. Cell Death Differ. 2018;25(12):2071–85. https://doi.org/10.1038/s41418-018-0094-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitchell P, Liew G, Gopinath B, Wong TY. Age-related macular degeneration. Lancet. 2018;392(10153):1147–59. https://doi.org/10.1016/S0140-6736(18)31550-2.

Article  PubMed  Google Scholar 

Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 2013;499(7458):295–300. https://doi.org/10.1038/nature12354.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calvert PD, Krasnoperova NV, Lyubarsky AL, Isayama T, Nicoló M, Kosaras B, et al. Phototransduction in transgenic mice after targeted deletion of the rod transducin a-subunit. Proc Natl Acad Sci. 2000;97(25):13913–8. https://doi.org/10.1073/pnas.250478897.

Article  CAS  PubMed  PubMed Central  Google Scholar 

San Martín A, Ceballo S, Ruminot I, Lerchundi R, Frommer WB, Barros LF. A Genetically Encoded FRET Lactate Sensor and Its Use To Detect the Warburg Effect in Single Cancer Cells. PLoS ONE. 2013;8(2). https://doi.org/10.1371/journal.pone.0057712.

Delgado MG, Oliva C, López E, Ibacache A, Galaz A, Delgado R, et al. Chaski, a novel Drosophila lactate/pyruvate transporter required in glia cells for survival under nutritional stress. Sci Rep. 2018;8(1):1186. https://doi.org/10.1038/s41598-018-19595-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ovens MJ, Davies AJ, Wilson MC, Murray CM, Halestrap AP. AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7–10. Biochem J. 2010;425(3):523–30. https://doi.org/10.1042/BJ20091515.

Article  CAS  PubMed  Google Scholar 

Takanaga H, Chaudhuri B, Frommer WB. GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. Biochim Biophys Acta (BBA) Biomembr. 2008;1778(4):1091–9. https://doi.org/10.1016/j.bbamem.2007.11.015.

留言 (0)

沒有登入
gif