Mutation spectrum of Kallmann syndrome: identification of five novel mutations across ANOS1 and FGFR1

Quinton R, Duke VM, Robertson A, Kirk JM, Matfin G, de Zoysa PA, et al. Idiopathic gonadotrophin deficiency: genetic questions addressed through phenotypic characterization. Clin Endocrinol (Oxf). 2001;55:163–74. https://doi.org/10.1046/j.1365-2265.2001.01277.x.

Article  CAS  PubMed  Google Scholar 

Boehm U, Bouloux PM, Dattani MT, de Roux N, Dodé C, Dunkel L, et al. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism–pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2015;11:547–64. https://doi.org/10.1038/nrendo.2015.112.

Article  PubMed  Google Scholar 

Laitinen EM, Vaaralahti K, Tommiska J, Eklund E, Tervaniemi M, Valanne L, et al. Incidence, phenotypic features and molecular genetics of Kallmann syndrome in Finland. Orphanet J Rare Dis. 2011;6:41. https://doi.org/10.1186/1750-1172-6-41.

Article  PubMed  PubMed Central  Google Scholar 

Stamou MI, Georgopoulos NA. Kallmann syndrome: phenotype and genotype of hypogonadotropic hypogonadism. Metabolism. 2018;86:124–34. https://doi.org/10.1016/j.metabol.2017.10.012.

Article  CAS  PubMed  Google Scholar 

Jiang X, Li D, Gao Y, Zhang X, Wang X, Yang Y, et al. A novel splice site variant in ANOS1 gene leads to Kallmann syndrome in three siblings. Gene. 2020;726:144177. https://doi.org/10.1016/j.gene.2019.144177.

Franco B, Guioli S, Pragliola A, Incerti B, Bardoni B, Tonlorenzi R, et al. A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature. 1991;353:529–36. https://doi.org/10.1038/353529a0.

del Castillo I, Cohen-Salmon M, Blanchard S, Lutfalla G, Petit C. Structure of the X-linked Kallmann syndrome gene and its homologous pseudogene on the Y chromosome. Nat Genet. 1992;2:305–10. https://doi.org/10.1038/ng1292-305.

Article  PubMed  Google Scholar 

Nie M, Xu H, Chen R, Mao J, Wang X, Xiong S, et al. Analysis of genetic and clinical characteristics of a Chinese Kallmann syndrome cohort with ANOS1 mutations. Eur J Endocrinol. 2017;177:389–98. https://doi.org/10.1530/EJE-17-0335.

Article  CAS  PubMed  Google Scholar 

Dodé C, Levilliers J, Dupont JM, De Paepe A, Le Dû N, Soussi-Yanicostas N, et al. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet. 2003;33:463–5. https://doi.org/10.1038/ng1122.

Article  CAS  PubMed  Google Scholar 

Böttcher RT, Niehrs C. Fibroblast growth factor signaling during early vertebrate development. Endocr Rev. 2005;26:63–77. https://doi.org/10.1210/er.2003-0040.

Article  CAS  PubMed  Google Scholar 

Gach A, Pinkier I, Szarras-Czapnik M, Sakowicz A, Jakubowski L. Expanding the mutational spectrum of monogenic hypogonadotropic hypogonadism: novel mutations in ANOS1 and FGFR1 genes. Reprod Biol Endocrinol. 2020;18:8. https://doi.org/10.1186/s12958-020-0568-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang R, Chen Z, Song Q, Wang S, Liu Z, Zhao X, et al. Identification of seven exonic variants in the SLC4A1, ATP6V1B1, and ATP6V0A4 genes that alter RNA splicing by minigene assay. Hum Mutat. 2021;42:1153–64. https://doi.org/10.1002/humu.24246.

Article  CAS  PubMed  Google Scholar 

Okonechnikov K, Golosova O, Fursov M; UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–7. https://doi.org/10.1093/bioinformatics/bts091.

Bianco SD, Kaiser UB. The genetic and molecular basis of idiopathic hypogonadotropic hypogonadism. Nat Rev Endocrinol. 2009;5:569–76. https://doi.org/10.1038/nrendo.2009.177.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarfati J, Bouvattier C, Bry-Gauillard H, Cartes A, Bouligand J, Young J. Kallmann syndrome with FGFR1 and KAL1 mutations detected during fetal life. Orphanet J Rare Dis. 2015;10:71. https://doi.org/10.1186/s13023-015-0287-9.

Article  PubMed  PubMed Central  Google Scholar 

Chen K, Wang H, Lai Y. Kallmann Syndrome Due to Heterozygous Mutation in SOX10 Coexisting With Waardenburg Syndrome Type II: Case Report and Review of Literature. Front Endocrinol (Lausanne). 2021;11:592831. https://doi.org/10.3389/fendo.2020.592831.

Hamada AJ, Esteves SC, Agarwal A. A comprehensive review of genetics and genetic testing in azoospermia. Clinics (Sao Paulo). 2013;68:39–60. https://doi.org/10.6061/clinics/2013(sup01)06.

Article  PubMed  Google Scholar 

Cariboni A, Pimpinelli F, Colamarino S, Zaninetti R, Piccolella M, Rumio C, et al. The product of X-linked Kallmann’s syndrome gene (KAL1) affects the migratory activity of gonadotropin-releasing hormone (GnRH)-producing neurons. Hum Mol Genet. 2004;13:2781–91. https://doi.org/10.1093/hmg/ddh309.

Soussi-Yanicostas N, Faivre-Sarrailh C, Hardelin JP, Levilliers J, Rougon G, Petit C. Anosmin-1 underlying the X chromosome-linked Kallmann syndrome is an adhesion molecule that can modulate neurite growth in a cell-type specific manner. J Cell Sci. 1998;111:2953–65.

Article  CAS  PubMed  Google Scholar 

Saadah OI, Banaganapalli B, Kamal NM, Sahly AN, Alsufyani HA, Mohammed A, et al. Identification of a Rare Exon 19 Skipping Mutation in ALMS1 Gene in Alström Syndrome Patients From Two Unrelated Saudi Families. Front Pediatr. 2021;9:652011. https://doi.org/10.3389/fped.2021.652011.

Thongnoppakhun A, Rungroj N, Wilairat P, Vareesangthip K, Sirinavin C, Yenchitsomanus PT. A novel splice-acceptor site mutation (IVS13-2A>T) of polycystic kidney disease 1 (PKD1) gene resulting in an RNA processing defect with a 74-nucleotide deletion in exon 14 of the mRNA transcript. Hum Mutat. 2000;15:115. https://doi.org/10.1002/(SICI)1098-1004(200001)15:1%3c115::AID-HUMU22%3e3.0.CO;2-Z.

Cong Y, Wu J, Wang H, Wu K, Huang C, Yang X. Identification of a Hemizygous Novel Splicing Variant in ATRX Gene: A Case Report and Literature Review. Front Pediatr. 2022;10:834087. https://doi.org/10.3389/fped.2022.834087.

Hwang JL, Park SY, Ye H, Sanyoura M, Pastore AN, Carmody D, et al. FOXP3 mutations causing early-onset insulin-requiring diabetes but without other features of immune dysregulation, polyendocrinopathy, enteropathy. X-linked syndrome Pediatr Diabetes. 2018;19:388–92. https://doi.org/10.1111/pedi.12612.

Article  CAS  PubMed  Google Scholar 

Willems AP, Gundogdu M, Kempers MJE, Giltay JC, Pfundt R, Elferink M, et al. Mutations in N-acetylglucosamine (O-GlcNAc) transferase in patients with X-linked intellectual disability. J Biol Chem. 2017;292:12621–31. https://doi.org/10.1074/jbc.M117.790097.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frey K, Pucker B. Animal, Fungi, and Plant Genome Sequences Harbor Different Non-Canonical Splice Sites. Cells. 2020;9:458. https://doi.org/10.3390/cells9020458.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Polla DL, Bhoj EJ, Verheij JBGM, Wassink-Ruiter JSK, Reis A, Deshpande C, et al. De novo variants in MED12 cause X-linked syndromic neurodevelopmental disorders in 18 females. Genet Med. 2021;23:645–52. https://doi.org/10.1038/s41436-020-01040-6.

Article  CAS  PubMed  Google Scholar 

Ayari B, Soussi-Yanicostas N. FGFR1 and anosmin-1 underlying genetically distinct forms of Kallmann syndrome are co-expressed and interact in olfactory bulbs. Dev Genes Evol. 2007;217:169–75. https://doi.org/10.1007/s00427-006-0125-0.

Article  CAS  PubMed  Google Scholar 

Murcia-Belmonte V, Astillero-López V, Esteban PF. Anosmin 1 Interacts with the Prokineticin Receptor 2 In Vitro Indicating a Molecular Link Between Both Proteins in the Pathogenesis of Kallmann Syndrome. Protein Pept Lett. 2016;23:650–5. https://doi.org/10.2174/0929866523666160517123331.

Article  CAS  PubMed  Google Scholar 

Murcia-Belmonte V, Esteban PF, García-González D, De Castro F. Biochemical dissection of Anosmin-1 interaction with FGFR1 and components of the extracellular matrix. J Neurochem. 2010;115:1256–65. https://doi.org/10.1111/j.1471-4159.2010.07024.x.

Article  CAS  PubMed  Google Scholar 

de Castro F, Esteban PF, Bribián A, Murcia-Belmonte V, García-González D, Clemente D. The adhesion molecule anosmin-1 in neurology: Kallmann syndrome and beyond. Adv Neurobiol. 2014;8:273–92. https://doi.org/10.1007/978-1-4614-8090-7_12.

Article  PubMed  Google Scholar 

Louden ED, Poch A, Kim HG, Ben-Mahmoud A, Kim SH, Layman LC. Genetics of hypogonadotropic Hypogonadism-Human and mouse genes, inheritance, oligogenicity, and genetic counseling. Mol Cell Endocrinol. 2021;534:111334. https://doi.org/10.1016/j.mce.2021.111334.

Georgopoulos NA, Koika V, Galli-Tsinopoulou A, Spiliotis BE, Adonakis G, Keramida MK, et al. Renal dysgenesis and KAL1 gene defects in patients with sporadic Kallmann syndrome. Fertil Steril. 2007;88:1311–7. https://doi.org/10.1016/j.fertnstert.2006.12.044.

Article  CAS  PubMed  Google Scholar 

Sato N, Katsumata N, Kagami M, Hasegawa T, Hori N, Kawakita S, et al. Clinical assessment and mutation analysis of Kallmann syndrome 1 (KAL1) and fibroblast growth factor receptor 1 (FGFR1, or KAL2) in five families and 18 sporadic patients. J Clin Endocrinol Metab. 2004;89:1079–88. https://doi.org/10.1210/jc.2003-030476.

Article  CAS  PubMed  Google Scholar 

Dodé C, Fouveaut C, Mortier G, Janssens S, Bertherat J, Mahoudeau J, et al. Novel FGFR1 sequence variants in Kallmann syndrome, and genetic evidence that the FGFR1c isoform is required in olfactory bulb and palate morphogenesis. Hum Mutat. 2007;28:97–8. https://doi.org/10.1002/humu.9470.

Article  PubMed  Google Scholar 

Pitteloud N, Acierno JS Jr, Meysing A, Eliseenkova AV, Ma J, Ibrahimi OA, et al. Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci U S A. 2006;103:6281–6. https://doi.org/10.1073/pnas.0600962103.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang D, Lai P. Global retardation and hereditary spherocytosis associated with a novel deletion of chromosome 8p11.21 encompassing KAT6A and ANK1. Eur J Med Genet. 2020;63:104082. https://doi.org/10.1016/j.ejmg.2020.104082.

Trarbach EB, Teles MG, Costa EM, Abreu AP, Garmes HM, Guerra G Jr, et al. Screening of autosomal gene deletions in patients with hypogonadotropic hypogonadism using multiplex ligation-dependent probe amplification: detection of a hemizygosis for the fibroblast growth factor receptor 1. Clin Endocrinol (Oxf). 2010;72:371–6. https://doi.org/10.1111/j.1365-2265.2009.03642.x.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif