Alternative Methods for Therapeutic Drug Monitoring and Dose Adjustment of Tuberculosis Treatment in Clinical Settings: A Systematic Review

Pasipanodya JG, McIlleron H, Burger A, Wash PA, Smith P, Gumbo T. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis. 2013;208:1464–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Srivastava S, Pasipanodya JG, Meek C, Leff R, Gumbo T. Multidrug-resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability. J Infect Dis. 2011;204:1951–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng X, Davies Forsman L, Bao Z, Xie Y, Ning Z, Schön T, et al. Drug exposure and susceptibility of second-line drugs correlate with treatment response in patients with multidrug-resistant tuberculosis: a multicentre prospective cohort study in China. Eur Respir J. 2022;59:2101925.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng X, Bao Z, Forsman LD, Hu Y, Ren W, Gao Y, et al. Drug exposure and minimum inhibitory concentration predict pulmonary tuberculosis treatment response. Clin Infect Dis. 2021;73:e3520–8.

Article  CAS  PubMed  Google Scholar 

Alffenaar JWC, Stocker SL, Forsman LD, Garcia-Prats A, Heysell SK, Aarnoutse RE, et al. Clinical standards for the dosing and management of TB drugs. Int J Tuberc Lung Dis. 2022;26:483–99.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reynolds J, Heysell SK. Understanding pharmacokinetics to improve tuberculosis treatment outcome. Expert Opin Drug Metab Toxicol. 2014;10:813–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim HY, Byashalira KC, Heysell SK, Märtson A-G, Mpagama SG, Rao P, et al. Therapeutic drug monitoring of anti-infective drugs: implementation strategies for 3 different scenarios. Ther Drug Monit. 2022;44:3–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alffenaar J-WC, Gumbo T, Dooley KE, Peloquin CA, Mcilleron H, Zagorski A, et al. Integrating pharmacokinetics and pharmacodynamics in operational research to end tuberculosis. Clin Infect Dis. 2020;70:1774–80.

Capiau S, Veenhof H, Koster RA, Bergqvist Y, Boettcher M, Halmingh O, et al. Official International Association for Therapeutic Drug Monitoring and Clinical Toxicology guideline: development and validation of dried blood spot-based methods for therapeutic drug monitoring. Ther Drug Monit. 2019;41:409–30.

Article  CAS  PubMed  Google Scholar 

Vu D, Alffenaar J, Edelbroek P, Brouwers J, Uges D. Dried blood spots: a new tool for tuberculosis treatment optimization. Curr Pharm Des. 2011;17:2931–9.

Article  CAS  PubMed  Google Scholar 

Zentner I, Schlecht HP, Khensouvann L, Tamuhla N, Kutzler M, Ivaturi V, et al. Urine colorimetry to detect low rifampin exposure during tuberculosis therapy: a proof-of-concept study. BMC Infect Dis. 2016;16:242.

Article  PubMed  PubMed Central  Google Scholar 

Zentner I, Modongo C, Zetola NM, Pasipanodya JG, Srivastava S, Heysell SK, et al. Urine colorimetry for therapeutic drug monitoring of pyrazinamide during tuberculosis treatment. Int J Infect Dis. 2018;68:18–23.

Article  CAS  PubMed  Google Scholar 

Rao P, Zhdanova S, Ogarkov O, Orlova E, Ebers A, Stroup S, et al. Urine colorimetry for levofloxacin pharmacokinetics and personalized dosing in people with drug-resistant tuberculosis. Int J Mycobacteriol. 2020;9:411–6.

CAS  PubMed  PubMed Central  Google Scholar 

Nicolau I, Tian L, Menzies D, Ostiguy G, Pai M. Point-of-care urine tests for smoking status and isoniazid treatment monitoring in adult patients. PLoS ONE. 2012;7: e45913.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szipszky C, Van Aartsen D, Criddle S, Rao P, Zentner I, Justine M, et al. Determination of rifampin concentrations by urine colorimetry and mobile phone readout for personalized dosing in tuberculosis treatment. J Pediatr Infect Dis Soc. 2021;10:104–11.

Article  CAS  Google Scholar 

Raju KSR, Taneja I, Singh SP, Wahajuddin. Utility of noninvasive biomatrices in pharmacokinetic studies: noninvasive biomatrices in pharmacokinetics. Biomed Chromatogr. 2013;27:1354–66.

van den Elsen SHJ, Oostenbrink LM, Heysell SK, Hira D, Touw DJ, Akkerman OW, et al. Systematic review of salivary versus blood concentrations of antituberculosis drugs and their potential for salivary therapeutic drug monitoring. Ther Drug Monit. 2018;40:17–37.

Article  PubMed  PubMed Central  Google Scholar 

Alffenaar J-WC, Jongedijk EM, van Winkel CAJ, Sariko M, Heysell SK, Mpagama S, et al. A mobile microvolume UV/visible light spectrophotometer for the measurement of levofloxacin in saliva. J Antimicrob Chemother. 2021;76:423–9.

Kim HY, Ruiter E, Jongedijk EM, Ak HK, Marais BJ, Pk B, et al. Saliva-based linezolid monitoring on a mobile UV spectrophotometer. J Antimicrob Chemother. 2021;76:1786–92.

Article  CAS  PubMed  Google Scholar 

Mohamed S, Mvungi HC, Sariko M, Rao P, Mbelele P, Jongedijk EM, et al. Levofloxacin pharmacokinetics in saliva as measured by a mobile microvolume UV spectrophotometer among people treated for rifampicin-resistant TB in Tanzania. J Antimicrob Chemother. 2021;76:1547–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mave V, Kadam D, Gaikwad S, Kinikar A, Aguilar D, Chavan A, et al. Measuring TB drug levels in the hair in adults and children to monitor drug exposure and outcomes. Int J Tuberc Lung Dis. 2021;25:52–60.

Article  CAS  PubMed  Google Scholar 

Wasserman S, Huo S, Ky K, Malig YN, Esmail A, Dheda K, et al. Correlation of linezolid hair concentrations with plasma exposure in patients with drug-resistant tuberculosis. Antimicrob Agents Chemother. 2020;64:e02145-e2219.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alffenaar JWC, Marais BJ, Heysell SK. Measuring anti-TB drug concentrations in hair: unlocking the door to cumulative drug exposure and treatment outcome. Int J Tuberc Lung Dis. 2021;25:3–5.

Article  CAS  PubMed  Google Scholar 

World Health Organization. Meeting report of the WHO expert consultation on drug-resistant tuberculosis treatment outcome definitions, 17–19 November 2020. Geneva: World Health Organization; 2021. https://apps.who.int/iris/handle/10665/340284. Accessed 13 July 2022.

Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355: i4919.

Article  PubMed  PubMed Central  Google Scholar 

Héder M. From NASA to EU: the evolution of the TRL scale in Public Sector Innovation. Innov J Public Sect Innov J. 2017;22(2):2–22.

Parsons TL, Marzinke MA, Hoang T, Bliven-Sizemore E, Weiner M, Mac Kenzie WR, et al. Quantification of rifapentine, a potent antituberculosis drug, from dried blood spot samples using liquid chromatographic-tandem mass spectrometric analysis. Antimicrob Agents Chemother. 2014;58:6747–57.

Article  PubMed  PubMed Central  Google Scholar 

Martial LC, Kerkhoff J, Martinez N, Rodríguez M, Coronel R, Molinas G, et al. Evaluation of dried blood spot sampling for pharmacokinetic research and therapeutic drug monitoring of anti-tuberculosis drugs in children. Int J Antimicrob Agents. 2018;52:109–13.

Article  CAS  PubMed  Google Scholar 

Vu DH, Koster RA, Bolhuis MS, Greijdanus B, Altena RV, Nguyen DH, et al. Simultaneous determination of rifampicin, clarithromycin and their metabolites in dried blood spots using LC-MS/MS. Talanta. 2014;121:9–17.

Article  CAS  PubMed  Google Scholar 

Brahmadhi A, Chen MX, Wang S-Y, Cho Y-Y, Yu M-C, Lee C-H, et al. Determination of fluoroquinolones in dried plasma spots by using microwave-assisted extraction coupled to ultra-high performance liquid chromatography-tandem mass spectrometry for therapeutic drug monitoring. J Pharm Biomed Anal. 2021;195: 113821.

Article  CAS  PubMed  Google Scholar 

Vu DH, Koster RA, Alffenaar JWC, Brouwers JRBJ, Uges DRA. Determination of moxifloxacin in dried blood spots using LC-MS/MS and the impact of the hematocrit and blood volume. J Chromatogr B Anal Technol Biomed Life Sci. 2011;879:1063–70.

Article  CAS  Google Scholar 

Vu DH, Bolhuis MS, Koster RA, Greijdanus B, de Lange WCM, van Altena R, et al. Dried blood spot analysis for therapeutic drug monitoring of linezolid in patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2012;56:5758–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baietto L, D’Avolio A, Ariaudo A, Corcione S, Simiele M, Cusato J, et al. Development and validation of a new UPLC-PDA method to quantify linezolid in plasma and in dried plasma spots. J Chromatogr B Anal Technol Biomed Life Sci. 2013;936:42–7.

Article  CAS  Google Scholar 

Lee K, Jun S-H, Choi M-S, Song SH, Park JS, Lee JH, et al. Application of the isoniazid assay in dried blood spots using the ultra-performance liquid chromatography-tandem mass spectrometry. Clin Biochem. 2017;50:882–5.

Article  CAS  PubMed  Google Scholar 

Macintyre CR, Goebel K, Brown GV. Patient knows best: blinded assessment of nonadherence with antituberculous therapy by physicians, nurses, and patients compared with urine drug levels. Prev Med. 2005;40:41–5.

Article  CAS  PubMed  Google Scholar 

Burkhardt KR, Nel EE. Monitoring regularity of drug intake in tuberculous patients by means of simple urine tests. S Afr Med J. 1980;57:981–5.

CAS  PubMed  Google Scholar 

Hashiguchi M, Ohno K, Sakuma A, Hino F, Tanaka T, Ohtsuji M, et al. A simplified method for detecting isoniazid compliance in patients receiving antituberculosis chemotherapy. J Clin Pharmacol. 2002;42:151–6.

Article  CAS  PubMed  Google Scholar 

Ellard GA, Jenner PJ, Downs PA. An evaluation of the potential use of isoniazid, acetylisoniazid and isonicotinic acid for monitoring the self-administration of drugs. Br J Clin Pharmacol. 1980;10:369–81.

Article

留言 (0)

沒有登入
gif