Histone 3.3-related chromatinopathy: missense variants throughout H3-3A and H3-3B cause a range of functional consequences across species

Adhvaryu KK, Berge E, Tamaru H, Freitag M, Selker EU (2011) Substitutions in the amino-terminal tail of neurospora histone H3 have varied effects on DNA methylation. PLoS Genet 7(12):e1002423. https://doi.org/10.1371/journal.pgen.1002423

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agalioti T, Chen G, Thanos D (2002) Deciphering the transcriptional histone acetylation code for a human gene. Cell 111(3):381–392. https://doi.org/10.1016/s0092-8674(02)01077-2

Article  CAS  PubMed  Google Scholar 

Agez M, Chen J, Guerois R, van Heijenoort C, Thuret JY, Mann C, Ochsenbein F (2007) Structure of the histone chaperone ASF1 bound to the histone H3 C-terminal helix and functional insights. Structure 15(2):191–199. https://doi.org/10.1016/j.str.2007.01.002

Article  CAS  PubMed  Google Scholar 

Ahmad K, Henikoff S (2002) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9(6):1191–1200. https://doi.org/10.1016/s1097-2765(02)00542-7

Article  CAS  PubMed  Google Scholar 

Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17(8):487–500. https://doi.org/10.1038/nrg.2016.59

Article  CAS  PubMed  Google Scholar 

Ardehali MB, Anselmo A, Cochrane JC, Kundu S, Sadreyev RI, Kingston RE (2017) Polycomb Repressive complex 2 methylates elongin A to regulate transcription. Mol Cell 68(5):872-884.e876. https://doi.org/10.1016/j.molcel.2017.10.025

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bader M (2019) Serotonylation: serotonin signaling and epigenetics. Front Mol Neurosci 12:288. https://doi.org/10.3389/fnmol.2019.00288

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395. https://doi.org/10.1038/cr.2011.22

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bao H, Carraro M, Flury V, Liu Y, Luo M, Chen L, Huang H (2022) NASP maintains histone H3–H4 homeostasis through two distinct H3 binding modes. Nucleic Acids Res 50(9):5349–5368. https://doi.org/10.1093/nar/gkac303

Article  CAS  PubMed  PubMed Central  Google Scholar 

Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, Van Loo P, Flanagan AM (2013) Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet 45(12):1479–1482. https://doi.org/10.1038/ng.2814

Article  CAS  PubMed  Google Scholar 

Boileau M, Shirinian M, Gayden T, Harutyunyan AS, Chen CCL, Mikael LG, Eppert K (2019) Mutant H3 histones drive human pre-leukemic hematopoietic stem cell expansion and promote leukemic aggressiveness. Nat Commun 10(1):2891. https://doi.org/10.1038/s41467-019-10705-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bowman GD, Poirier MG (2015) Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev 115(6):2274–2295. https://doi.org/10.1021/cr500350x

Article  CAS  PubMed  Google Scholar 

Bryant L, Li D, Cox SG, Marchione D, Joiner EF, Wilson K, Bhoj EJ (2020) Histone H3.3 beyond cancer: germline mutations in Histone 3 Family 3A and 3B cause a previously unidentified neurodegenerative disorder in 46 patients. Sci Adv. https://doi.org/10.1126/sciadv.abc9207

Article  PubMed  PubMed Central  Google Scholar 

Campos EI, Fillingham J, Li G, Zheng H, Voigt P, Kuo WH, Reinberg D (2010) The program for processing newly synthesized histones H3.1 and H4. Nat Struct Mol Biol 17(11):1343–1351. https://doi.org/10.1038/nsmb.1911

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen F, Yang H, Dong Z, Fang J, Wang P, Zhu T, Xu Y (2013a) Structural insight into substrate recognition by histone demethylase LSD2/KDM1b. Cell Res 23(2):306–309. https://doi.org/10.1038/cr.2013.17

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen H, Workman JJ, Tenga A, Laribee RN (2013b) Target of rapamycin signaling regulates high mobility group protein association to chromatin, which functions to suppress necrotic cell death. Epigenetics Chromatin 6(1):29. https://doi.org/10.1186/1756-8935-6-29

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen ZJ, Tian L (2007) Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochim Biophys Acta 1769(5–6):295–307. https://doi.org/10.1016/j.bbaexp.2007.04.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clancy KW, Russell AM, Subramanian V, Nguyen H, Qian Y, Campbell RM, Thompson PR (2017) Citrullination/methylation crosstalk on histone H3 regulates ER-target gene transcription. ACS Chem Biol 12(6):1691–1702. https://doi.org/10.1021/acschembio.7b00241

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cook AJ, Gurard-Levin ZA, Vassias I, Almouzni G (2011) A specific function for the histone chaperone NASP to fine-tune a reservoir of soluble H3–H4 in the histone supply chain. Mol Cell 44(6):918–927. https://doi.org/10.1016/j.molcel.2011.11.021

Article  CAS  PubMed  Google Scholar 

Couture JF, Collazo E, Trievel RC (2006) Molecular recognition of histone H3 by the WD40 protein WDR5. Nat Struct Mol Biol 13(8):698–703. https://doi.org/10.1038/nsmb1116

Article  CAS  PubMed  Google Scholar 

Dai J, Hyland EM, Yuan DS, Huang H, Bader JS, Boeke JD (2008) Probing nucleosome function: a highly versatile library of synthetic histone H3 and H4 mutants. Cell 134(6):1066–1078. https://doi.org/10.1016/j.cell.2008.07.019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dawson MA, Bannister AJ, Göttgens B, Foster SD, Bartke T, Green AR, Kouzarides T (2009) JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 461(7265):819–822. https://doi.org/10.1038/nature08448

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dawson MA, Foster SD, Bannister AJ, Robson SC, Hannah R, Wang X, Kouzarides T (2012) Three distinct patterns of histone H3Y41 phosphorylation mark active genes. Cell Rep 2(3):470–477. https://doi.org/10.1016/j.celrep.2012.08.016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng Q, Pan B, Alam HB, Liang Y, Wu Z, Liu B, Li Y (2019) Citrullinated histone H3 as a therapeutic target for endotoxic shock in mice. Front Immunol 10:2957. https://doi.org/10.3389/fimmu.2019.02957

Article  CAS  PubMed  Google Scholar 

DeNizio JE, Elsässer SJ, Black BE (2014) DAXX co-folds with H3.3/H4 using high local stability conferred by the H3.3 variant recognition residues. Nucleic Acids Res 42(7):4318–4331. https://doi.org/10.1093/nar/gku090

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Cerbo V, Mohn F, Ryan DP, Montellier E, Kacem S, Tropberger P, Schneider R (2014) Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. Elife 3:e01632. https://doi.org/10.7554/eLife.01632

Article  PubMed  PubMed Central  Google Scholar 

Drané P, Ouararhni K, Depaux A, Shuaib M, Hamiche A (2010) The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 24(12):1253–1265. https://doi.org/10.1101/gad.566910

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duina AA, Winston F (2004) Analysis of a mutant histone H3 that perturbs the association of Swi/Snf with chromatin. Mol Cell Biol 24(2):561–572. https://doi.org/10.1128/mcb.24.2.561-572.2004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elsässer SJ, Huang H, Lewis PW, Chin JW, Allis CD, Patel DJ (2012) DAXX envelops a histone H3.3–H4 dimer for H3.3-specific recognition. Nature 491(7425):560–565. https://doi.org/10.1038/nature11608

Article  CAS  PubMed  PubMed Central  Google Scholar 

English CM, Adkins MW, Carson JJ, Churchill ME, Tyler JK (2006) Structural basis for the histone chaperone activity of Asf1. Cell 127(3):495–508. https://doi.org/10.1016/j.cell.2006.08.047

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fallah MS, Szarics D, Robson CM, Eubanks JH (2020) Impaired Regulation of Histone Methylation and Acetylation Underlies Specific Neurodevelopmental Disorders. Front Genet 11:613098. https://doi.org/10.3389/fgene.2020.613098

Article  CAS  PubMed  Google Scholar 

Farrelly LA, Thompson RE, Zhao S, Lepack AE, Lyu Y, Bhanu NV, Maze I (2019) Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature 567(7749):535–539. https://doi.org/10.1038/s41586-019-1024-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferreira H, Somers J, Webster R, Flaus A, Owen-Hughes T (2007) Histone tails and the H3 alphaN helix regulate nucleosome mobility and stability. Mol Cell Biol 27(11):4037–4048. https:

留言 (0)

沒有登入
gif