Antibacterial and anti-biofilm properties of carvacrol alone and in combination with cefixime against Escherichia coli

Sharifi A, Mohammadzadeh A, Zahraei Salehi T, Mahmoodi P. Antibacterial, antibiofilm and antiquorum sensing effects of Thymus daenensis and Satureja hortensis essential oils against Staphylococcus aureus isolates. J Appl Microbiol. 2018;124(2):379–88.

Article  CAS  PubMed  Google Scholar 

Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control. 2019;8(1):1–10.

Article  Google Scholar 

Yin W, Wang Y, Liu L, He J. Biofilms: the microbial “protective clothing” in extreme environments. Int J Mol Sci. 2019;20(14):3423.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malekzadegan Y, Halaji M, Hasannejad-Bibalan M, Jalalifar S, Fathi J, Ebrahim-Saraie HS. Burden of Clostridium (Clostridioides) difficile infection among patients in Western Asia: a systematic review and meta-analysis. Iran J Public Health. 2019;48(9):1589.

PubMed  PubMed Central  Google Scholar 

Mah T-FC, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends in microbiol. 2001;9(1):34–9.

Article  CAS  Google Scholar 

Mishra R, Panda AK, De Mandal S, Shakeel M, Bisht SS, Khan J. Natural anti-biofilm agents: Strategies to control biofilm-forming pathogens. Front Microbiol. 2020;11:2640.

Article  Google Scholar 

Dhivya R, Rajakrishnapriya VC, Sruthi K, Chidanand DV, Sunil CK, Rawson A. Biofilm combating in the food industry: Overview, non‐thermal approaches, and mechanisms. Journal of Food Processing and Preservation. 2022;46(10):e16282.

Carrascosa C, Raheem D, Ramos F, Saraiva A, Raposo A. Microbial biofilms in the food industry—A comprehensive review. Int J Environ Res Public Health. 2021;18(04):2014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annual Reviews in Microbiology. 2000;54(1):49–79.

Article  CAS  Google Scholar 

Hashemi B, Afkhami H, Khaledi M, Kiani M, Bialvaei AZ, Fathi J, et al. Frequency of Metalo beta Lactamase genes, bla IMP1, INT 1 in Acinetobacter baumanii isolated from burn patients North of Iran. Gene Reports. 2020;21:100800.

Article  CAS  Google Scholar 

Hashemizadeh Z, Hatam G, Fathi J, Aminazadeh F, Hosseini-Nave H, Hadadi M, et al. The Spread of Insertion Sequences Element and Transposons in Carbapenem Resistant Acinetobacter baumannii in a Hospital Setting in Southwestern Iran. Infection & Chemotherapy. 2022;54(2):275.

Article  CAS  Google Scholar 

Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018;9(1):522–54.

Article  CAS  PubMed  Google Scholar 

Anand S, Griffiths MW. Quorum sensing and expression of virulence in Escherichia coli O157: H7. Int J Food Microbiol. 2003;85(1–2):1–9.

Article  CAS  PubMed  Google Scholar 

Sharifi A, Mohammadzadeh A, Salehi TZ, Mahmoodi P, Nourian A. Cuminum cyminum L. Essential Oil: A Promising Antibacterial and Antivirulence Agent Against Multidrug-Resistant Staphylococcus aureus. Frontiers in Microbiol. 2021;12:667833.

Article  Google Scholar 

K Bhardwaj A, Vinothkumar K, Rajpara N. Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Pat Anti Drug Discov. 2013;8(1):68–83.

Article  Google Scholar 

Kaper JB, Nataro JP, Mobley HL. Pathogenic escherichia coli. Nat Rev Microbiol. 2004;2(2):123–40.

Article  CAS  PubMed  Google Scholar 

Fathi J, Ebrahimi F, Nazarian S, Tarverdizade Y. Purification of Shiga-like Toxin from Escherichia coli O157: H7 by a Simple Method. Journal of Applied Biotechnology Reports. 2017;4(4):707–11.

CAS  Google Scholar 

Sharma G, Sharma S, Sharma P, Chandola D, Dang S, Gupta S, et al. Escherichia coli biofilm: development and therapeutic strategies. J Appl Microbiol. 2016;121(2):309–19.

Article  CAS  PubMed  Google Scholar 

Beloin C, Roux A, Ghigo JM. Escherichia coli biofilms. Bacterial biofilms. 2008:249-89.

Danese PN, Pratt LA, Kolter R. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol. 2000;182(12):3593–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Theri M, Nazarian S, Ebrahimi F, Fathi J. Immunization evaluation of type III secretion system recombinant antigens and Shiga like toxin binding subunit of E. coli O157: H7. J Babol Univ Med Sci. 2018;20(7):47–54.

Google Scholar 

Papenfort K, Bassler BL. Quorum sensing signal–response systems in Gram-negative bacteria. Nat Rev Microbiol. 2016;14(9):576–88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

González Barrios AF, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol. 2006;188(1):305–16.

Article  PubMed  PubMed Central  Google Scholar 

Song S, Wood TK. The primary physiological roles of autoinducer 2 in Escherichia coli are chemotaxis and biofilm formation. Microorganisms. 2021;9(2):386.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walters M, Sircili MP, Sperandio V. AI-3 synthesis is not dependent on luxS in Escherichia coli. J Bacteriol. 2006;188(16):5668–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mobarki N, Almerabi B, Hattan A. Antibiotic resistance crisis. Int J Med Dev Ctries. 2019;40(4):561–4.

Google Scholar 

Taheri M, Nazarian S, Ebrahimi F, Bakhshi M, Fathi J. Immunogenic evaluation of recombinant chimeric protein containing EspA-Stx2b-Intimin against E. coli O157 H7. Sci J Kurdistan Univ of Med Sci. 2018;22(6):49–62.

Google Scholar 

Fathi J, Nazarian S, Kordbacheh E, Hadi N. An in silico Design, Expression and Purification of a Chimeric Protein as an Immunogen Candidate Consisting of IpaD, StxB, and TolC Proteins from Shigella spp. Avicenna Journal of Medical Biotechnology. 2022;14(3):247–58.

PubMed  PubMed Central  Google Scholar 

Lee SY, Lee JH, Kim JH, Hur JK, Kim SM, Ma SH, et al. Susceptibility tests of oral antibiotics including cefixime against Escherichia coli, isolated from pediatric patients with community acquired urinary tract infections. Clinical and Experimental Pediatrics. 2006;49(7):777–83.

Google Scholar 

Al-Tamimi M, Abu-Raideh J, Albalawi H, Shalabi M, Saleh S. Effective oral combination treatment for extended-spectrum beta-lactamase-producing Escherichia coli. Microb Drug Resist. 2019;25(8):1132–41.

Article  CAS  PubMed  Google Scholar 

Nostro A, Papalia T. Antimicrobial activity of carvacrol: current progress and future prospectives. Recent Pat Anti-Infect Drug Discovery. 2012;7(1):28–35.

Article  CAS  Google Scholar 

Wijesundara NM, Lee SF, Cheng Z, Davidson R, Rupasinghe HV. Carvacrol exhibits rapid bactericidal activity against Streptococcus pyogenes through cell membrane damage. Sci Rep. 2021;11(1):1–14.

Article  Google Scholar 

Marinelli L, Di Stefano A, Cacciatore I. Carvacrol and its derivatives as antibacterial agents. Phytochem Rev. 2018;17(4):903–21.

Article  Google Scholar 

Trevisan DA, Silva AF, Negri M, Abreu Filho BA, Machinski Junior M, Patussi EV, Campanerut-Sá PA, Mikcha JM. Antibacterial and antibiofilm activity of carvacrol against Salmonella enterica serotype Typhimurium. Brazilian Journal of Pharmaceutical Sciences. 2018;54.

Magi G, Marini E, Facinelli B. Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant Group A Streptococci. Front Microbiol. 2015;6:165.

Article  PubMed  PubMed Central  Google Scholar 

Swamy MK, Akhtar MS, Sinniah UR. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evidence-based complementary and alternative medicine. 2016;2016.

Gutierrez J, Barry-Ryan C, Bourke P. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int J Food Microbiol. 2008;124(1):91–7.

Article  CAS  PubMed  Google Scholar 

Terreni M, Taccani M, Pregnolato M. New antibiotics for multidrug-resistant bacterial strains: latest research developments and future perspectives. Molecules. 2021;26(9):2671.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ashoobi MT, Hemmati H, Golshekan M, Pourhasan-Kisomi R. Synthesis Fe3O4@ MCM-41-Urokinase Nano-Composite as an Advanced Drug Delivery System. Silicon. 2022:1-8.

Sousa LG, Castro J, Cavaleiro C, Salgueiro L, Tomás M, Palmeira-Oliveira R, et al. Synergistic effects of carvacrol, α-terpinene, γ-terpinene, ρ-cymene and linalool against Gardnerella species. Sci Rep. 2022;12(1):1–15.

Article  Google Scholar 

Soković M, Glamočlija J, Marin PD, Brkić D, Van Griensven LJ. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules. 2010;15(11):7532–46.

Article  PubMed  PubMed Central  Google Scholar 

Ben Arfa A, Combes S, Preziosi-Belloy L, Gontard N, Chalier P. Antimicrobial activity of carvacrol related to its chemical structure. Lett Appl Microbiol. 2006;43(2):149–54.

Article  CAS  PubMed  Google Scholar 

Abdollahzadeh E, Rezaei M, Hosseini H. Antibacterial activity of plant essential oils and extracts: The role of thyme essential oil, nisin, and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control. 2014;35(1):177–83.

Article  CAS  Google Scholar 

Lambert R, Skandamis PN, Coote PJ, Nychas GJ. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol. 2001;91(3):453–62.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif