Plant growth promotion and differential expression of defense genes in chilli pepper against Colletotrichum truncatum induced by Trichoderma asperellum and T. harzianum

FAOSTAT, 2020. Available at: http://faostat.fao.org/faostat/collections/subset/agriculture.

Yadav M, Dubey MK, Upadhyay RS. Systemic Resistance in chilli pepper against anthracnose (Caused by Colletotrichum truncatum) induced by Trichoderma harzianum, Trichoderma asperellum and Paenibacillus dendritiformis. J Fungi. 2021;7(4):307. https://doi.org/10.3390/jof7040307.

Saxena A, Raghuwanshi R, Gupta VK, Singh HB. Chilli anthracnose: the epidemiology and management. Front Microbiol. 2016;7:1527. https://doi.org/10.3389/fmicb.2016.01527.

Article  PubMed  PubMed Central  Google Scholar 

Dubey MK, Zehra A, Aamir M, Yadav M, Samal S, Upadhyay RS. Isolation, identification, carbon utilization profile and control of Pythium graminicola, the causal agent of chilli damping-off. J Phytopathol. 2020;168(2):88–102. https://doi.org/10.1111/jph.12872.

de Silva DD, Groenewald JZ, Crous PW, Ades PK, Nasruddin A, Mongkolporn O, Taylor PW. Identification, prevalence and pathogenicity of Colletotrichum species causing anthracnose of Capsicum annuum in Asia. IMA Fungus. 2019;10(1):1–32. https://doi.org/10.1186/s43008-019-0001-y.

Saxena A, Raghuwanshi R, Singh H. Molecular, phenotypic and pathogenic variability in Colletotrichum isolates of subtropical region in north-eastern India, causing fruit rot of chillies. J Appl Microbiol. 2014;117(5):1422–34. https://doi.org/10.1111/jam.12607.

Mishra A, Ratan V, Trivedi S, Dabbas M, Shankar K, Singh A, Srivastava Y. Survey of anthracnose and wilt of chilli: A potential threat to chilli crop in central Uttar Pradesh. Int J Pharmacogn Phytochem. 2018;7:1970–6.

Google Scholar 

Kumar R, Rai A, Rai AC, Singh VK, Singh M, Singh PM, Singh J. De novo assembly, differential gene expression and pathway analyses for anthracnose resistance in chilli (Capsicum annuum L.). J Plant Biochem Biotechnol. 2022;31(1):124–38. https://doi.org/10.1007/s13562-021-00668-y.

Bi Y, Guo W, Zhang G, Liu S, Chen Y. First report of Colletotrichum truncatum causing anthracnose of strawberry in China. Plant Dis. 2017;101(5):832. https://doi.org/10.1094/PDIS-07-16-1036-PDN.

Xavier G, Chandran M, George T, Beevi SN, Mathew TB, Paul A, Arimboor R, Vijayasree V, Pradeepkumar G, Rajith R. Persistence and effect of processing on reduction of fipronil and its metabolites in chilli pepper (Capsicum annum L.) fruits. Environ Monit Assess. 2014;186(9):5429–37. https://doi.org/10.1007/s10661-014-3792-8.

Oo MM, Oh S-K. Chilli anthracnose (Colletotrichum spp.) disease and its management approach. Korean J Agric Sci. 2016;43(2):153–62. https://doi.org/10.7744/kjoas.20160018.

Upadhyay P, Rai A, Kumar R, Singh M, Sinha B. Differential expression of pathogenesis related protein genes in tomato during inoculation with A. solani. J Plant Pathol Microbiol. 2014;5(1):1. https://doi.org/10.4172/2157-7471.1000217.

Sun Y, Huang B, Cheng P, Li C, Chen Y, Li Y, Zheng L, Xing J, Dong Z, Yu G. Endophytic Bacillus subtilis TR21 improves banana plant resistance to Fusarium oxysporum f. sp. cubense and promotes root growth by upregulating the jasmonate and brassinosteroid biosynthesis pathways. Phytopathol. 2022;112(2):219–31.

Aziz A, Verhagen B, Magnin-Robert M, Couderchet M, Clément C, Jeandet P, Trotel-Aziz P. Effectiveness of beneficial bacteria to promote systemic resistance of grapevine to gray mold as related to phytoalexin production in vineyards. Plant Soil. 2016;405(1):141–53.

Article  CAS  Google Scholar 

Jain A, Singh S, Kumar Sarma B, Bahadur SH. Microbial consortium–mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum. J Appl Microbiol. 2012;112(3):537–50.

Singh A, Sarma BK, Upadhyay RS, Singh HB. Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiol Res. 2013;168(1):33–40.

Article  CAS  PubMed  Google Scholar 

Ray S, Singh S, Sarma B, Singh H. Endophytic Alcaligenes isolated from horticultural and medicinal crops promotes growth in okra (Abelmoschus esculentus). J Plant Growth Regul. 2016;35(2):401–12.

Abdelrahman M, Abdel-Motaal F, El-Sayed M, Jogaiah S, Shigyo M, Ito S-i, Tran L-SP. Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Sci. 2016;246:128–38.

Kwon YS, Lee DY, Rakwal R, Baek SB, Lee JH, Kwak YS, Seo JS, Chung WS, Bae DW, Kim SG. Proteomic analyses of the interaction between the plant-growth promoting rhizobacterium Paenibacillus polymyxa E681 and Arabidopsis thaliana. Proteomics. 2016;16(1):122–35.

Zarei A, Körbes AP, Younessi P, Montiel G, Champion A, Memelink J. Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1. 2 promoter in Arabidopsis. Plant Mol Biol. 2011;75(4):321–31.

Saxena A, Mishra S, Ray S, Raghuwanshi R, Singh HB. Differential reprogramming of defense network in Capsicum annum L. plants against Colletotrichum truncatum infection by phyllospheric and rhizospheric Trichoderma strains. J Plant Growth Regul. 2020;39(2):751–63.

Phoka N, Suwannarach N, Lumyong S, Ito S-i, Matsui K, Arikit S, Sunpapao A. Role of volatiles from the endophytic fungus Trichoderma asperelloides PSU-P1 in biocontrol potential and in promoting the plant growth of Arabidopsis thaliana. J Fungi. 2020;6(4):341.

Pandey D, Rajendran SRCK, Gaur M, Sajeesh P, Kumar A. Plant defense signaling and responses against necrotrophic fungal pathogens. J Plant Growth Regul. 2016;35(4):1159–74.

Article  CAS  Google Scholar 

Monteiro VN, do Nascimento Silva R, Steindorff AS, Costa FT, Noronha EF, Ricart CAO, de Sousa MV, Vainstein MH, Ulhoa CJ. New insights in Trichoderma harzianum antagonism of fungal plant pathogens by secreted protein analysis. Curr Microbiol. 2010;61(4):298–305.

Xu Y, Zhang J, Shao J, Feng H, Zhang R, Shen Q. Extracellular proteins of Trichoderma guizhouense elicit an immune response in maize (Zea mays) plants. Plant Soil. 2020;449(1):133–49.

Saxena A, Raghuwanshi R, Singh HB. Trichoderma species mediated differential tolerance against biotic stress of phytopathogens in Cicer arietinum L. J Basic Microbiol. 2015;55(2):195–206.

De Silva D, Ades P, Crous P, Taylor P. Colletotrichum species associated with chili anthracnose in Australia. Plant Pathol. 2017;66(2):254–67.

Montri P, Taylor P, Mongkolporn O. Pathotypes of Colletotrichum capsici, the causal agent of chili anthracnose. Thailand Plant Dis. 2009;93(1):17–20.

Guo W, Chen R, Gong Z, Yin Y, Ahmed S, He Y. Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress. Genet Mol Res. 2012;11(4):4063–80.

Wieczorek D, Delauriere L, Schagat T. Methods of RNA quality assessment. Promega Corporation Web site 2012:1–14. Accessed.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–8.

Article  CAS  PubMed  Google Scholar 

Aamir M, Singh VK, Meena M, Upadhyay RS, Gupta VK, Singh S. Structural and functional insights into WRKY3 and WRKY4 transcription factors to unravel the WRKY–DNA (W-Box) complex interaction in tomato (Solanum lycopersicum L.). A computational approach. Front Plant Sci. 2017;8:819.

Chakraborty S, Driscoll HE, Abrahante JE, Zhang F, Fisher RF, Harris JM. Salt stress enhances early symbiotic gene expression in Medicago truncatula and induces a stress-specific set of rhizobium-responsive genes. Mol Plant Microbe Interact. 2021;34(8):904–21.

Bari R, Jones JD. Role of plant hormones in plant defence responses. Plant Mol Biol. 2009;69(4):473–88.

Article  CAS  PubMed  Google Scholar 

Chen S-C, Ren J-J, Zhao H-J, Wang X-L, Wang T-H, Jin S-D, Wang Z-H, Li C-Y, Liu A-R, Lin X-M. Trichoderma harzianum improves defense against Fusarium oxysporum by regulating ROS and RNS metabolism, redox balance, and energy flow in cucumber roots. Phytopathol. 2019;109(6):972–82.

Cuervo-Parra JA, Pérez España VH, Zavala-González EA, Peralta-Gil M, Aparicio Burgos JE, Romero-Cortes T. Trichoderma asperellum strains as potential biological control agents against Fusarium verticillioides and Ustilago maydis in maize. Biocontrol Sci Technol. 2022;32(5):624–47.

Vitti A, Bevilacqua V, Logozzo G, Bochicchio R, Amato M, Nuzzaci M. Seed Coating with Trichoderma harzianum T-22 of Italian Durum Wheat Increases Protection against Fusarium culmorum-Induced Crown Rot. Agriculture. 2022;12(5):714.

Rawat L, Bisht T, Kukreti A. Potential of seed biopriming with Trichoderma in ameliorating salinity stress and providing resistance against leaf blast disease in finger millet (Eleusine coracana L.). Indian Phytopathol. 2022;75(1):147–64.

da Silva FL, Aquino EN, da Cunha DC, Hamann PRV, Magalhães TB, Steindorff AS, Ulhoa CJ, Noronha EF. Analysis of Trichoderma harzianum TR 274 secretome to assign candidate proteins involved in symbiotic interactions with Phaseolus vulgaris. Biocatal Agric Biotechnol. 2022;43:102380. https://doi.org/10.1016/j.bcab.2022.102380

Mendis HC, Thomas VP, Schwientek P, Salamzade R, Chien J-T, Waidyarathne P, Kloepper J, De La Fuente L. Strain-specific quantification of root colonization by plant growth promoting rhizobacteria Bacillus firmus I-1582 and Bacillus amyloliquefaciens QST713 in non-sterile soil and field conditions. PLoS One. 2018;13(2):e0193119. https://doi.org/10.1371/journal.pone.0193119.

Wang H, Zhang R, Mao Y, Jiang W, Chen X, Shen X, Yin C, Mao Z. Effects of Trichoderma asperellum 6S–2 on Apple Tree Growth and Replanted Soil Microbial Environment. J Fungi. 2022;8(1):63.

Hou XY, Wang YF, Jiang CY, Zhai TT, Miao R, Deng JJ, Zhang RS. A native Trichoderma harzianum strain Th62 displays antagonistic activities against phytopathogenic fungi and promotes the growth of Celosia cristata. Hortic Environ Biotechnol. 2021;62(2):169–79.

Ruangwong O-U, Pornsuriya C, Pitija K, Sunpapao A. Biocontrol mechanisms of Trichoderma koningiopsis PSU3-2 against postharvest anthracnose of chili pepper. J Fungi. 2021;7(4):276.

Sunpapao, A. 2020. Antagonistic Microorganisms: Current Research and Innovations. LAP LAMBERT Academic Publishing.

Patel JS, Kharwar RN, Singh HB, Upadhyay RS, Sarma BK. Trichoderma asperellum (T42) and Pseudomonas fluorescens (OKC)-enhances resistance of pea against Erysiphe pisi through enhanced ROS generation and lignifications. Front Microbiol. 2017;8:306. https://doi.org/10.3389/fmicb.2017.00306.

Zhou Y, Ma J, Xie J, Deng L, Yao S, Zeng K. Transcriptomic and biochemical analysis of highlighted induction of phenylpropanoid pathway metabolism of Citrus fruit in response to salicylic acid, Pichia membranaefaciens and oligochitosan. Postharvest Biol Technol. 2018;142:81–92.

Mitra PP, Loqué D. Histochemical staining of Arabidopsis thaliana secondary cell wall elements. J Vis Exp. 2014;87:e51381. https://doi.org/10.3791/51381.

Geng D, Chen P, Shen X, Zhang Y, Li X, Jiang L, Xie Y, Niu C, Zhang J, Huang X. MdMYB88 and MdMYB124 enhance drought tolerance by modulating root vessels and cell walls in apple. Plant Physiol. 2018;178(3):1296–309.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aamir M, Kashyap SP, Zehra A, Dubey MK, Singh VK, Ansari WA, Upadhyay RS, Singh S. Trichoderma erinaceum bio-priming modulates the WRKYs defense programming in tomato against the Fusarium oxysporum f. sp. lycopersici (Fol) challenged condition. Front Plant Sci. 2019;10:911. https://doi.org/10.3389/fpls.2019.00911.

Hermosa R, Rubio MB, Cardoza RE, Nicolás C, Monte E, Gutiérrez S. The contribution of Trichoderma to balancing the costs of plant growth and defense. Int Microbiol. 2013;16(2):69–80.

Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J. 2006;47(6):851–63.

Mishra R, Nanda S, Rout E, Chand SK, Mohanty JN, Joshi RK. Differential expression of defense-related genes in chilli pepper infected with anthracnose pathogen Colletotrichum truncatum. Physiol Mol Plant Pathol. 2017;97:1–10.

Gowtham H, Murali M, Singh SB, Lakshmeesha T, Murthy KN, Amruthesh K, Niranjana S. Plant growth promoting rhizobacteria-Bacillus amyloliquefaciens improves plant growth and induces resistance in chilli against anthracnose disease. Biol Control. 2018;126:209–17.

Denancé N, Sánchez-Vallet A, Goffner D, Molina A. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci. 2013;4:155. https://doi.org/10.3389/fpls.2013.00155.

Article  PubMed  PubMed Central  Google Scholar 

Nieto-Jacobo MF, Steyaert JM, Salazar-Badillo FB, Nguyen DV, Rostás M, Braithwaite M, De Souza JT, Jimenez-Bremont JF, Ohkura M, Stewart A. Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front Plant Sci. 2017;8:102.

Estrada-Rivera M, Rebolledo-Prudencio OG, Pérez-Robles DA, Rocha-Medina MdC, González-López MdC, Casas-Flores S. Trichoderma histone deacetylase HDA-2 modulates multiple responses in Arabidopsis. Plant Physiol. 2019;179(4):1343–61.

García-Gómez P, Almagro G, Sánchez-López ÁM, Bahaji A, Ameztoy K, Ricarte-Bermejo A, Baslam M, Antolín MC, Urdiain A, López-Belchi MD. Volatile compounds other than CO2 emitted by different microorganisms promote distinct post transcriptionally regulated responses in plants. Plant Cell Environ. 2019;42(5):1729–46.

Article  PubMed  Google Scholar 

Li X, Garbeva P, Liu X, Klein Gunnewiek PJ, Clocchiatti A, Hundscheid MP, Wang X, De Boer W. Volatile-mediated antagonism of soil bacterial communities against fungi. Environ Microbiol. 2020;22(3):1025–35.

Article  CAS  PubMed  Google Scholar 

Vinale F, Sivasithamparam K. Beneficial effects of Trichoderma secondary metabolites on crops. Phytother Res. 2020;34(11):2835–42.

Wong JH, Xia L, Ng T. A review of defensins of diverse origins. Curr Protein Pept Sci. 2007;8(5):446–59.

Article  CAS  PubMed  Google Scholar 

Tundo S, Paccanaro MC, Bigini V, Savatin DV, Faoro F, Favaron F, Sella L. The Fusarium graminearum FGSG_03624 xylanase enhances plant immunity and increases resistance against bacterial and fungal pathogens. Int J Mol Sci. 2021;22(19):10811. https://doi.org/10.3390/ijms221910811.

Antico CJ, Colon C, Banks T, Ramonell KM. Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. Front Biol. 2012;7(1):48–56.

Article  CAS  Google Scholar 

Lubaina A, Murugan K. Ultrastructural changes and oxidative stress markers in wild and cultivar Sesamum orientale L. following Alternaria sesami (Kawamura) Mohanty and Behera inoculation. Indian J Exp Biol. 2013;51:670–80.

Kazerooni EA, Maharachchikumbura SS, Al-Sadi AM, Kang S-M, Yun B-W, Lee I-J. Biocontrol Potential of Bacillus amyloliquefaciens against Botrytis pelargonii and Alternaria alternata on Capsicum annuum. J Fungi. 2021;7(6):472. https://doi.org/10.3390/jof7060472.

De Palma M, D’Agostino N, Proietti S, Bertini L, Lorito M, Ruocco M, Caruso C, Chiusano ML, Tucci M. Suppression subtractive hybridization analysis provides new insights into the tomato (Solanum lycopersicum L.) response to the plant probiotic microorganism Trichoderma longibrachiatum MK1. J Plant Physiol. 2016;190:79–94.

Zehra A, Meena M, Dubey MK, Aamir M, Upadhyay R. Synergistic effects of plant defense elicitors and Trichoderma harzianum on enhanced induction of antioxidant defense system in tomato against Fusarium wilt disease. Bot Stud. 2017;58(1):1–14.

Sudisha J, Sharathchandra R, Amruthesh K, Kumar A, Shetty HS. Pathogenesis related proteins in plant defense response. In: Plant defence. Biological Control. Springer; 2012: 379–403.

Chun S-C, Chandrasekaran M. Chitosan and chitosan nanoparticles induced expression of pathogenesis-related proteins genes enhances biotic stress tolerance in tomato. Int J Biol Macromol. 2019;125:948–54.

Article  CAS  PubMed  Google Scholar 

Boccardo NA, Segretin ME, Hernandez I, Mirkin FG, Chacón O, Lopez Y, Borrás-Hidalgo O, Bravo-Almonacid FF. Expression of pathogenesis-related proteins in transplastomic tobacco plants confers resistance to filamentous pathogens under field trials. Sci Rep. 2019;9(1):1–13.

Article  CAS  Google Scholar 

Rout E, Nanda S, Joshi RK. Molecular characterization and heterologous expression of a pathogen induced PR5 gene from garlic (Allium sativum L.) conferring enhanced resistance to necrotrophic fungi. Eur J Plant Pathol. 2016;144(2):345.

留言 (0)

沒有登入
gif