Nanospanlastics as a Novel Approach for Improving the Oral Delivery of Resveratrol in Lipopolysaccharide-Induced Endotoxicity in Mice

Annane D, Bellissant E, Cavaillon JM. Septic shock. Lancet. 2005;365(9453):63–78. https://doi.org/10.1016/s0140-6736(04)17667-8.

Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, et al. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 1994;8(2):217–25. https://doi.org/10.1096/fasebj.8.2.8119492.

Larrosa M, Azorín-Ortuño M, Yañez-Gascón MJ, García-Conesa MT, Tomás-Barberán F, Espín JC. Lack of effect of oral administration of resveratrol in LPS-induced systemic inflammation. Eur J Nutr. 2011;50(8):673–80. https://doi.org/10.1007/s00394-011-0178-3.

Kolac UK, Ustuner MC, Tekin N, Ustuner D, Colak E, Entok E. The anti-inflammatory and antioxidant effects of Salvia officinalis on lipopolysaccharide-induced inflammation in rats. J Med Food. 2017;20(12):1193–200. https://doi.org/10.1089/jmf.2017.0035.

Rauf A, Imran M, Suleria HaR, Ahmad B, Peters DG, Mubarak MS. A comprehensive review of the health perspectives of resveratrol. Food Funct. 2017;8(12):4284–305. https://doi.org/10.1039/c7fo01300k.

Sebai H, Gadacha W, Sani M, Aouani E, Ghanem-Boughanmi N, Ben-Attia M. Protective effect of resveratrol against lipopolysaccharide-induced oxidative stress in rat brain. Brain Inj. 2009;23(13–14):1089–94. https://doi.org/10.3109/02699050903379370.

Sebai H, Sani M, Yacoubi MT, Aouani E, Ghanem-Boughanmi N, Ben-Attia M. Resveratrol, a red wine polyphenol, attenuates lipopolysaccharide-induced oxidative stress in rat liver. Ecotoxicol Environ Saf. 2010;73(5):1078–83. https://doi.org/10.1016/j.ecoenv.2009.12.031.

Sebai H, Ben-Attia M, Sani M, Aouani E, Ghanem-Boughanmi N. Protective effect of resveratrol on acute endotoxemia-induced nephrotoxicity in rat through nitric oxide independent mechanism. Free Radic Res. 2008;42(11–12):913–20. https://doi.org/10.1080/10715760802555577.

Wang G, Hu Z, Fu Q, Song X, Cui Q, Jia R, et al. Resveratrol mitigates lipopolysaccharide-mediated acute inflammation in rats by inhibiting the TLR4/NF-κBp65/MAPKs signaling cascade. Sci Rep. 2017;745006. https://doi.org/10.1038/srep45006.

El-Ghazaly MA, Fadel NA, Abdel-Naby DH, Abd El-Rehim HA, Zaki HF, Kenawy SA. Amelioration of adjuvant-induced arthritis by exposure to low dose gamma radiation and resveratrol administration in rats. Int J Radiat Biol. 2020;96(7):857–67. https://doi.org/10.1080/09553002.2020.1748911.

Penalva R, Esparza I, Larraneta E, González-Navarro CJ, Gamazo C, Irache JM. Zein-based nanoparticles improve the oral bioavailability of resveratrol and its anti-inflammatory effects in a mouse model of endotoxic shock. J Agric Food Chem. 2015;63(23):5603–11. https://doi.org/10.1021/jf505694e.

El-Ghazaly MA, Fadel NA, Abdel-Naby DH, Abd El-Rehim HA, Zaki HF, Kenawy SA. Potential anti-inflammatory action of resveratrol and piperine in adjuvant-induced arthritis: effect on pro-inflammatory cytokines and oxidative stress biomarkers. Egypt Rheumatol. 2020;42(1):71–7. https://doi.org/10.1016/j.ejr.2019.08.003.

Walle T. Bioavailability of resveratrol. Ann N Y Acad Sci. 2011;12159–15. https://doi.org/10.1111/j.1749-6632.2010.05842.x.

Walle T, Hsieh F, Delegge MH, Oatis JE, Jr., Walle UK. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos. 2004;32(12):1377–82. https://doi.org/10.1124/dmd.104.000885.

Pace-Asciak CR, Hahn S, Diamandis EP, Soleas G, Goldberg DM. The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart disease. Clin Chim Acta. 1995;235(2):207–19. https://doi.org/10.1016/0009-8981(95)06045-1.

Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5(6):493–506. https://doi.org/10.1038/nrd2060.

Kalita B, Das MK, Sarma M, Deka A. Sustained anti-inflammatory effect of resveratrol-phospholipid complex embedded polymeric patch. AAPS PharmSciTech. 2017;18(3):629–45. https://doi.org/10.1208/s12249-016-0542-y.

Kesharwani P, Gorain B, Low SY, Tan SA, Ling ECS, Lim YK, et al. Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res Clin Pract. 2018;13652–77. https://doi.org/10.1016/j.diabres.2017.11.018.

Mohsen AM. Nanotechnology advanced strategies for the management of diabetes mellitus. Curr Drug Targets. 2019;20(10):995–1007. https://doi.org/10.2174/1389450120666190307101642.

Alonso MJ. Nanomedicines for overcoming biological barriers. Biomed Pharmacother. 2004;58(3):168–72. https://doi.org/10.1016/j.biopha.2004.01.007.

Elmeshad AN, Mohsen AM. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv. 2016;23(7):2115–23. https://doi.org/10.3109/10717544.2014.942811.

Coimbra M, Isacchi B, Van Bloois L, Torano JS, Ket A, Wu X, et al. Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. Int J Pharm. 2011;416(2):433–42. https://doi.org/10.1016/j.ijpharm.2011.01.056.

Neves AR, Lúcio M, Martins S, Lima JL, Reis S. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int J Nanomedicine. 2013;8177–87. https://doi.org/10.2147/ijn.S37840.

Shao J, Li X, Lu X, Jiang C, Hu Y, Li Q, et al. Enhanced growth inhibition effect of resveratrol incorporated into biodegradable nanoparticles against glioma cells is mediated by the induction of intracellular reactive oxygen species levels. Colloids Surf B Biointerfaces. 2009;72(1):40–7. https://doi.org/10.1016/j.colsurfb.2009.03.010.

Badria F, Mazyed E. Formulation of nanospanlastics as a promising approach for improving the topical delivery of a natural leukotriene inhibitor (3-acetyl-11-keto-β-boswellic acid): statistical optimization, in vitro characterization, and ex vivo permeation study. Drug Des Devel Ther. 2020;143697–721. https://doi.org/10.2147/dddt.S265167.

Al-Mahallawi AM, Khowessah OM, Shoukri RA. Enhanced non invasive trans-tympanic delivery of ciprofloxacin through encapsulation into nano-spanlastic vesicles: fabrication, in-vitro characterization, and comparative ex-vivo permeation studies. Int J Pharm. 2017;522(1–2):157–64. https://doi.org/10.1016/j.ijpharm.2017.03.005.

Kakkar S, Kaur IP. Spanlastics--a novel nanovesicular carrier system for ocular delivery. Int J Pharm. 2011;413(1–2):202–10. https://doi.org/10.1016/j.ijpharm.2011.04.027.

Sharma A, Pahwa S, Bhati S, Kudeshia P. Spanlastics: a modern approach for nanovesicular drug delivery system. Int J Pharm Sci Res. 2020;11(3):1057–65. https://doi.org/10.13040/IJPSR.0975-8232.

Zheng WS, Fang XQ, Wang LL, Zhang YJ. Preparation and quality assessment of itraconazole transfersomes. Int J Pharm. 2012;436(1–2):291–8. https://doi.org/10.1016/j.ijpharm.2012.07.003.

De Vries T, Villalon CM, Maassenvandenbrink A. Pharmacological treatment of migraine: CGRP and 5-HT beyond the triptans. Pharmacol Ther. 2020;211107528

Abdelbari MA, El-Mancy SS, Elshafeey AH, Abdelbary AA. Implementing spanlastics for improving the ocular delivery of clotrimazole: in vitro characterization, ex vivo permeability, microbiological assessment and in vivo safety study. Int J Nanomedicine. 2021;166249–61. https://doi.org/10.2147/ijn.S319348.

Kamboj S, Saini V, Maggon N, Bala S, Jhawat V. Vesicular drug delivery systems: a novel approach for drug targeting. 2013;5(2):121–30.

Google Scholar 

Shaaban M, Nasr M, Tawfik AA, Fadel M, Sammour O. Novel bergamot oil nanospanlastics combined with PUVB therapy as a clinically translatable approach for vitiligo treatment. Drug Deliv Transl Res. 2019;9(6):1106–16. https://doi.org/10.1007/s13346-019-00653-y.

Abdelbary G. Ocular ciprofloxacin hydrochloride mucoadhesive chitosan-coated liposomes. Pharm Dev Technol. 2011;16(1):44–56. https://doi.org/10.3109/10837450903479988.

Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm. 1998;172(1–2):33–70.

Article  CAS  Google Scholar 

Jigar V, Puja V, Krutika S. Formulation and evaluation of topical niosomal gel of erythromycin. Int J Pharm Pharm Sci. 2011;3(1):123–6.

Google Scholar 

Mohsen AM, Abousamra MM, Elshebiney SA. Enhanced oral bioavailability and sustained delivery of glimepiride via niosomal encapsulation: in-vitro characterization and in-vivo evaluation. Drug Dev Ind Pharm. 2017;43(8):1254–64. https://doi.org/10.1080/03639045.2017.1310224.

Khalil RM, Abd-Elbary A, Kassem MA, El Ridy MS, Samra M, Awad G, et al. Formulation and characterization of nystatin-loaded nanostructured lipid carriers for topical delivery against cutaneous candidiasis. Br J Pharm Res. 2014;4(4):490–512.

Article  Google Scholar 

Kikwai L, Babu RJ, Prado R, Kolot A, Armstrong CA, Ansel JC, et al. In vitro and in vivo evaluation of topical formulations of spantide II. AAPS PharmSciTech. 2005;6(4):E565–72. https://doi.org/10.1208/pt060471.

Peppas NA, Sahlin JJ. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57(2):169–72

Mohsen AM, Younis MM, Salama A, Darwish AB. Cubosomes as a potential oral drug delivery system for enhancing the hepatoprotective effect of coenzyme Q10. J Pharm Sci. 2021;110(7):2677–86. https://doi.org/10.1016/j.xphs.2021.02.007.

El-Ridy MS, Yehia SA, Mohsen AM, El-Awdan SA, Darwish AB. Formulation of niosomal gel for enhanced transdermal lornoxicam delivery: in-vitro and in-vivo evaluation. Curr Drug Deliv. 2018;15(1):122–33. https://doi.org/10.2174/1567201814666170224141548.

Soliman MG, Mansour HA, Hassan WA, El-Sayed RA, Hassaan NA. Mesenchymal stem cells therapeutic potential alleviate lipopolysaccharide-induced acute lung injury in rat model. J Biochem Mol Toxicol. 2018;32(11):e22217. https://doi.org/10.1002/jbt.22217.

Liu L, Mu Q, Li W, Xing W, Zhang H, Fan T, et al. Isofraxidin protects mice from LPS challenge by inhibiting pro-inflammatory cytokines and alleviating histopathological changes. Immunobiology. 2015;220(3):406–13. https://doi.org/10.1016/j.imbio.2014.10.007.

Gao LN, Cui YL, Wang QS, Wang SX. Amelioration of Danhong injection on the lipopolysaccharide-stimulated systemic acute inflammatory reaction via multi-target strategy. J Ethnopharmacol. 2013;149(3):772–82. https://doi.org/10.1016/j.jep.2013.07.039.

Bancroft JD, Stevens A, Turner DR. Theory and practice of histological techniques. New York Churchill Livingstone. 1996.

Yoshioka T, Sternberg B, Florence AT. Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and a sorbitan triester (Span 85). Int J Pharm. 1994;105(1):1–6.

Article  CAS  Google Scholar 

Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Duodenum-triggered delivery of pravastatin sodium via enteric surface-coated nanovesicular spanlastic dispersions: development, characterization and pharmacokinetic assessments. Int J Pharm. 2015;483(1–2):77–88. https://doi.org/10.1016/j.ijpharm.2015.02.012.

Hao Y, Zhao F, Li N, Yang Y, Li K. Studies on a high encapsulation of colchicine by a niosome system. Int J Pharm. 2002;244(1–2):73–80. https://doi.org/10.1016/s0378-5173(02)00301-0.

Van Den Bergh BA, Wertz PW, Junginger HE, Bouwstra JA. Elasticity of vesicles assessed by electron spin resonance, electron microscopy and extrusion measurements. Int J Pharm. 2001;217(1–2):13–24. https://doi.org/10.1016/s0378-5173(01)00576-2.

Abdelbary G, El-Gendy N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech. 2008;9(3):740–7. https://doi.org/10.1208/s12249-008-9105-1.

Uchegbu IF, Florence AT. Non-ionic surfactant vesicles (niosomes): physical and pharmaceutical chemistry. Adv Colloid Interface Sci. 1995;58(1):1–55.

Article  CAS  Google Scholar 

Dora CP, Singh SK, Kumar S, Datusalia AK, Deep A. Development and characterization of nanoparticles of glibenclamide by solvent displacement method. Acta Pol Pharm. 2010;67(3):283–90.

CAS  PubMed  Google Scholar 

Almuqbil RM, Sreeharsha N, Nair AB. Formulation-by-design of efinaconazole spanlastic nanovesicles for transungual delivery using statistical risk management and multivariate analytical techniques. Pharmaceutics. 2022;14(7):1419.

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Hadi Aa, Ahmed Hm, Zaki Ra, Mohsen Am. Enhance enzymatic activity of streptomyces griseoplanus L-asparginase via its incorporation in an oil-based nanocarrier. Int J App Pharm. 2020203–10. https://doi.org/10.22159/ijap.2020v12i5.38360.

Parveen R, Baboota S, Ali J, Ahuja A, Vasudev SS, Ahmad S. Oil based nanocarrier for improved oral delivery of silymarin: in vitro and in vivo studies. Int J Pharm. 2011;413(1–2):245–53. https://doi.org/10.1016/j.ijpharm.2011.04.041.

Aditya NP, Shim M, Lee I, Lee Y, Im MH, Ko S. Curcumin and genistein coloaded nanostructured lipid carriers: in vitro digestion and antiprostate cancer activity. J Agric Food Chem. 2013;61(8):1878–83. https://doi.org/10.1021/jf305143k.

Mohsen AM. Cationic polymeric nanoparticles for improved ocular delivery and antimycotic activity of Terconazole. J Pharm Sci. 2022;111(2):458–68. https://doi.org/10.1016/j.xphs.2021.09.019.

Junyaprasert VB, Teeranachaideekul V, Supaperm T. Effect of charged and non-ionic membrane additives on physicochemical properties and stability of niosomes. AAPS PharmSciTech. 2008;9(3):851–9. https://doi.org/10.1208/s12249-008-9121-1.

Joshi M, Patravale V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int J Pharm. 2008;346(1–2):124–32. https://doi.org/10.1016/j.ijpharm.2007.05.060.

Varshosaz J, Pardakhty A, Hajhashemi VI, Najafabadi AR. Development and physical characterization of sorbitan monoester niosomes for insulin oral delivery. Drug Deliv. 2003;10(4):251–62. https://doi.org/10.1080/drd_10_4_251.

Hady MA, Darwish AB, Abdel-Aziz MS, Sayed OM. Design of transfersomal nanocarriers of nystatin for combating vulvovaginal candidiasis; a different prospective. Colloids Surf B Biointerfaces. 2021;211112304. https://doi.org/10.1016/j.colsurfb.2021.112304.

Hong M, Zhu S, Jiang Y, Tang G, Pei Y. Efficient tumor targeting of hydroxycamptothecin loaded PEGylated niosomes modified with transferrin. J Control Release. 2009;133(2):96–102. https://doi.org/10.1016/j.jconrel.2008.09.005.

Barakat HS, Darwish IA, El-Khordagui LK, Khalafallah NM. Development of naftifine hydrochloride alcohol-free niosome gel. Drug Dev Ind Pharm. 2009;35(5):631–7. https://doi.org/10.1080/03639040802498864.

Khazaeli P, Pardakhty A, Shoorabi H. Caffeine-loaded niosomes: characterization and in vitro release studies. Drug Deliv. 2007;14(7):447–52. https://doi.org/10.1080/10717540701603597.

Azeem A, Anwer MK, Talegaonkar S. Niosomes in sustained and targeted drug delivery: some recent advances. J Drug Target. 2009;17(9):671–89. https://doi.org/10.3109/10611860903079454.

Mokhtar M, Sammour OA, Hammad MA, Megrab NA. Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes. Int J Pharm. 2008;361(1–2):104–11. https://doi.org/10.1016/j.ijpharm.2008.05.031.

Lokhande AB, Mishra S, Kulkarni RD, Naik JB. Preparation and characterization of repaglinide loaded ethylcellulose nanoparticles by solvent diffusion technique using high pressure homogenizer. J Pharm Res. 2013;7(5):421–6. https://doi.org/10.1016/j.jopr.2013.04.049.

Mohsen AM, Salama A, Kassem AA. Development of acetazolamide loaded bilosomes for improved ocular delivery: preparation, characterization and in vivo evaluation. J Drug Deliv Sci Technol. 2020;59101910

Allam A, Fetih G. Sublingual fast dissolving niosomal films for enhanced bioavailability and prolonged effect of metoprolol tartrate. Drug Des Devel Ther. 2016;102421–33. https://doi.org/10.2147/dddt.S113775.

Khalil RM, Abdelbary A, Kocova El-Arini S, Basha M, El-Hashemy HA. Evaluation of bilosomes as nanocarriers for transdermal delivery of tizanidine hydrochloride: in vitro and ex vivo optimization. J Liposome Res. 2019;29(2):171–82. https://doi.org/10.1080/08982104.2018.1524482.

Yeo LK, Olusanya TOB, Chaw CS, Elkordy AA. Brief effect of a small hydrophobic drug (cinnarizine) on the physicochemical characterisation of niosomes produced by thin-film hydration and microfluidic methods. Pharmaceutics. 2018;10(4). https://doi.org/10.3390/pharmaceutics10040185.

Abou Taleb S, Darwish AB, Abood A, Mohamed AM. Investigation of a new horizon antifungal activity with enhancing the antimicrobial efficacy of ciprofloxacin and its binary mixture via their encapsulation in nanoassemblies: in vitro and in vivo evaluation. Drug Dev Res. 2020;81(3):374–88. https://doi.org/10.1002/ddr.21632.

Kumpugdee-Vollrath M. Solid state characterization of trans resveratrol complexes with different cyclodextrins. J Asian. 2012;1125–36

Nishihira VSK, Da Silva Fernandes L, Mortari SR, Raffin RP, Rech VC. Characterization of resveratrol/hydroxipropyl-β-cyclodextrin inclusion complex for subsequent application in hyperglicemic rats. Disciplinarum Scientia| Naturais e Tecnológicas. 2013;14(1):67–72

Venuti V, Cannavà C, Cristiano MC, Fresta M, Majolino D, Paolino D, et al. A characterization study of resveratrol/sulfobutyl ether-β-cyclodextrin inclusion complex and in vitro anticancer activity. Colloids Surf B Biointerfaces. 2014;11522–8. https://doi.org/10.1016/j.colsurfb.2013.11.025.

Mazyed EA, Zakaria S. Enhancement of dissolution characteristics of clopidogrel bisulphate by proniosomes. Int J Appl Pharm. 2019;11(2):77–85. https://doi.org/10.22159/ijap.2019v11i2.30575.

Shruthi PA, Pushpadass HA, Franklin MEE, Battula SN, Laxmana Naik N. Resveratrol-loaded proniosomes: formulation, characterization and fortification. LWT. 2020;134(14):110127. https://doi.org/10.1016/j.lwt.2020.110127.

Kazi KM, Mandal AS, Biswas N, Guha A, Chatterjee S, Behera M, et al. Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res. 2010;1(4):374–80. https://doi.org/10.4103/0110-5558.76435.

Das MK, Palei NN. Sorbitan ester niosomes for topical delivery of rofecoxib. Indian J Exp Biol. 2011;49(6):438–45.

CAS  PubMed  Google Scholar 

Poli-De-Figueiredo LF, Garrido AG, Nakagawa N, Sannomiya P. Experimental models of sepsis and their clinical relevance. Shock. 2008;30 Suppl 153–9. https://doi.org/10.1097/SHK.0b013e318181a343.

El-Tanbouly DM, Abdelsalam RM, Attia AS, Abdel-Aziz MT. Pretreatment with magnesium ameliorates lipopolysaccharide-induced liver injury in mice. Pharmacol Rep. 2015;67(5):914–20. https://doi.org/10.1016/j.pharep.2015.02.004.

Mohamed AF, Safar MM, Zaki HF, Sayed HM. Telluric acid ameliorates endotoxemic kidney injury in mice: involvement of TLR4, Nrf2, and PI3K/Akt signaling pathways. Inflammation. 2017;40(5):1742–52. https://doi.org/10.1007/s10753-017-0617-2.

Dinarello CA. The IL-1 family and inflammatory diseases. Clin Exp Rheumatol. 2002;20(5 Suppl 27):S1-13.

CAS  PubMed  Google Scholar 

Chen YY, Zhang L, Shi DL, Song XH, Shen YL, Zheng MZ, et al. Resveratrol attenuates subacute systemic inflammation-induced spatial memory impairment via inhibition of astrocyte activation and enhancement of ynaptophysin expression in the hippocampus. Ann Clin Lab Sci. 2017;47(1):17–24.

CAS  PubMed  Google Scholar 

Sebai H, Ben-Attia M, Sani M, Aouani E, Ghanem-Boughanmi N. Protective effect of resveratrol in endotoxemia-induced acute phase response in rats. Arch Toxicol. 2009;83(4):335–40. https://doi.org/10.1007/s00204-008-0348-0.

Chen L, Yang S, Zumbrun EE, Guan H, Nagarkatti PS, Nagarkatti M. Resveratrol attenuates lipopolysaccharide-induced acute kidney injury by suppressing inflammation driven by macrophages. Mol Nutr Food Res. 2015;59(5):853–64. https://doi.org/10.1002/mnfr.201400819.

留言 (0)

沒有登入
gif