iBEAT V2.0: a multisite-applicable, deep learning-based pipeline for infant cerebral cortical surface reconstruction

Gilmore, J. H., Knickmeyer, R. C. & Gao, W. Imaging structural and functional brain development in early childhood. Nat. Rev. Neurosci. 19, 123–137 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, G. et al. Computational neuroanatomy of baby brains: a review. NeuroImage 185, 906–925 (2019).

Article  PubMed  Google Scholar 

Lyall, A. E. et al. Dynamic development of regional cortical thickness and surface area in early childhood. Cereb. Cortex 25, 2204–2212 (2015).

Article  PubMed  Google Scholar 

Garcia, K. E. et al. Dynamic patterns of cortical expansion during folding of the preterm human brain. Proc. Natl Acad. Sci. USA 115, 3156–3161 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, G. et al. Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age. J. Neurosci. 34, 4228–4238 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, F. et al. Developmental topography of cortical thickness during infancy. Proc. Natl Acad. Sci. USA 116, 15855–15860 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shaw, P. et al. Intellectual ability and cortical development in children and adolescents. Nature 440, 676–679 (2006).

Article  CAS  PubMed  Google Scholar 

Howell, B. R. et al. The UNC/UMN Baby Connectome Project (BCP): an overview of the study design and protocol development. NeuroImage 185, 891–905 (2019).

Article  PubMed  Google Scholar 

Makropoulos, A. et al. The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction. NeuroImage 173, 88–112 (2018).

Article  PubMed  Google Scholar 

Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis: I. segmentation and surface reconstruction. NeuroImage 9, 179–194 (1999).

Article  CAS  PubMed  Google Scholar 

Fischl, B., Sereno, M. I. & Dale, A. M. Cortical surface-based analysis: II. inflation, flattening, and a surface-based coordinate system. NeuroImage 9, 195–207 (1999).

Article  CAS  PubMed  Google Scholar 

Hagler, D. J. et al. Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. NeuroImage 202, 116091 (2019).

Article  CAS  PubMed  Google Scholar 

Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105–124 (2013).

Article  PubMed  Google Scholar 

Sun, Y. et al. Multi-site infant brain segmentation algorithms: the iSeg-2019 challenge. IEEE Trans. Med. Imaging 40, 1363–1376 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Ellis, C. T. et al. Retinotopic organization of visual cortex in human infants. Neuron 109, 2616–2626.e6 (2021).

Article  CAS  PubMed  Google Scholar 

Hu, D. et al. Existence of functional connectome fingerprint during infancy and its stability over months. J. Neurosci. 42, 377–389 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Na, X. et al. Maternal obesity during pregnancy is associated with lower cortical thickness in the neonate brain. Am. J. Neuroradiol. https://doi.org/10.3174/ajnr.a7316 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Wang, Y. et al. Developmental abnormalities of structural covariance networks of cortical thickness and surface area in autistic infants within the first 2 years. Cereb. Cortex https://doi.org/10.1093/cercor/bhab448 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Natu, V. S. et al. Infants’ cortex undergoes microstructural growth coupled with myelination during development. Commun. Biol. 4, 1–12 (2021).

Article  Google Scholar 

Grotheer, M. et al. White matter myelination during early infancy is linked to spatial gradients and myelin content at birth. Nat. Commun. 13, 1–12 (2022).

Article  Google Scholar 

Jiang, W. et al. Neural alterations in opioid-exposed infants revealed by edge-centric brain functional networks. Brain Commun. 4, (2022).

Huang, Y. et al. Mapping developmental regionalization and patterns of cortical surface area from 29 post-menstrual weeks to 2 years of age. Proc. Natl Acad. Sci. USA 119, e2121748119 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sled, J. G., Zijdenbos, A. P. & Evans, A. C. A nonparametric method for automatic correction of intensity nonuniformity in mri data. IEEE Trans. Med. Imaging 17, 87–97 (1998).

Article  CAS  PubMed  Google Scholar 

Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–156 (2001).

Article  CAS  PubMed  Google Scholar 

Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825–841 (2002).

Article  PubMed  Google Scholar 

Sun, L. et al. Topological correction of infant white matter surfaces using anatomically constrained convolutional neural network. NeuroImage 198, 114–124 (2019).

Article  PubMed  Google Scholar 

Yeo, B. T. T. et al. Spherical demons: fast diffeomorphic landmark-free surface registration. IEEE Trans. Med. Imaging 29, 650–668 (2010).

Article  PubMed  Google Scholar 

Robinson, E. C. et al. MSM: a new flexible framework for multimodal surface matching. NeuroImage 100, 414–426 (2014).

Article  PubMed  Google Scholar 

Zhao, F. et al. Spherical deformable U-net: application to cortical surface parcellation and development prediction. IEEE Trans. Med. Imaging 40, 1217–1228 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Zhao, F. et al. S3Reg: superfast spherical surface registration based on deep learning. IEEE Trans. Med. Imaging https://doi.org/10.1109/TMI.2021.3069645 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Wang, L. et al. LINKS: Learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images. NeuroImage 108, 160–172 (2015).

Article  PubMed  Google Scholar 

Zöllei, L., Iglesias, J. E., Ou, Y., Grant, P. E. & Fischl, B. Infant FreeSurfer: an automated segmentation and surface extraction pipeline for T1-weighted neuroimaging data of infants 0–2 years. NeuroImage 218, 116946 (2020).

Article  PubMed  Google Scholar 

Henschel, L. et al. FastSurfer—a fast and accurate deep learning based neuroimaging pipeline. NeuroImage 219, 117012 (2020).

Article  PubMed  Google Scholar 

Wang, L. et al. Benchmark on automatic six-month-old infant brain segmentation algorithms: the iSeg-2017 challenge. IEEE Trans. Med. Imaging 38, 2219–2230 (2019).

Article  Google Scholar 

Zaitsev, M., Maclaren, J. & Herbst, M. Motion artifacts in MRI: a complex problem with many partial solutions. J. Magn. Reson. Imaging 42, 887–901 (2015).

Article  PubMed  Google Scholar 

Paschal, C. B. & Morris, H. D. K-space in the clinic. J. Magn. Reson. Imaging 19, 145–159 (2004).

Article  PubMed  Google Scholar 

Drakulich, S. et al. Maturational trajectories of pericortical contrast in typical brain development. NeuroImage 235, (2021).

Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 (2006).

Article  PubMed  Google Scholar 

Wu, Z. et al. Construction of 4D infant cortical surface atlases with sharp folding patterns via spherical patch-based group-wise sparse representation. Hum. Brain Mapp. 40, 3860–3880 (2019).

PubMed  PubMed Central  Google Scholar 

Li, G. et al. Mapping region-specific longitudinal cortical surface expansion from birth to 2 years of age. Cereb. Cortex 23, 2724–2733 (2013).

Article  PubMed  Google Scholar 

Nie, J. et al. Longitudinal development of cortical thickness, folding, and fiber density networks in the first 2 years of life. Hum. Brain Mapp. 35, 3726–3737 (2014).

Article  PubMed 

留言 (0)

沒有登入
gif