Depolarized Mitochondrial Membrane Potential and Elevated Calcium in Platelets of Sickle Cell Disease

Quinn CT (2016) Minireview: clinical severity in sickle cell disease: the challenges of definition and prognostication. Exp Biol Med 241(7):679–688. https://doi.org/10.1177/1535370216640385

Article  CAS  Google Scholar 

Kavanagh PL, Fasipe TA, Wun T (2022) Sickle cell disease: a review. JAMA 328(1):57–68. https://doi.org/10.1001/jama.2022.10233

Article  CAS  PubMed  Google Scholar 

Rees DC, Williams TN, Gladwin MT (2010) Sickle-cell disease. Lancet (London, England) 376(9757):2018–2031. https://doi.org/10.1016/S0140-6736(10)61029-X

Article  CAS  PubMed  Google Scholar 

Annarapu GK, Nolfi-Donegan D, Reynolds, et al (2021) Mitochondrial reactive oxygen species scavenging attenuates thrombus formation in a murine model of sickle cell disease. JTH 19(9):2256–2262. https://doi.org/10.1111/jth.15298

Article  CAS  PubMed  Google Scholar 

Villagra J, Shiva S, Hunter LA et al (2007) Platelet activation in patients with sickle disease, hemolysis-associated pulmonary hypertension, and nitric oxide scavenging by cell-free hemoglobin. Blood 110(6):2166–2172. https://doi.org/10.1182/blood-2006-12-061697

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wun T, Paglieroni T, Rangaswami A et al (1998) Platelet activation in patients with sickle cell disease. Br J Haematol 100(4):741–749. https://doi.org/10.1046/j.1365-2141.1998.00627.x

Article  CAS  PubMed  Google Scholar 

Vogel S, Thein SL (2018) Platelets at the crossroads of thrombosis, inflammation and haemolysis. Br J Haematol 180(5):761–767. https://doi.org/10.1111/bjh.15117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frelinger AL 3rd, Jakubowski JA, Brooks JK et al (2014) Platelet activation and inhibition in sickle cell disease (pains) study. Platelets 25(1):27–35. https://doi.org/10.3109/09537104.2013.770136

Article  CAS  PubMed  Google Scholar 

Osman Y, Vatte CB (2018) Study of platelet activation markers and plasma cytokines in sickle cell disease patients during vaso-occlusive pain crises. J Hematopathol 11:37–44. https://doi.org/10.1007/s12308-018-0322-6

Article  Google Scholar 

Thein MS, Igbineweka NE, Thein SL (2017) Sickle cell disease in the older adult. Pathology 49(1):1–9. https://doi.org/10.1016/j.pathol.2016.10.002

Article  PubMed  Google Scholar 

Yamakawa K, Ogura H, Koh T et al (2013) Platelet mitochondrial membrane potential correlates with severity in patients with systemic inflammatory response syndrome. J Trauma Acute Care Surg 74(2):411–418. https://doi.org/10.1097/TA.0b013e31827a34cf

Article  CAS  PubMed  Google Scholar 

Kraemer BF, Hennis I, Karge A et al (2022) Platelet mitochondrial membrane depolarization reflects disease severity in patients with preeclampsia. Mol Med (Camb, MA) 28(1):51. https://doi.org/10.1186/s10020-022-00472-x

Article  CAS  Google Scholar 

Gründler K, Angstwurm M, Hilge R et al (2014) Platelet mitochondrial membrane depolarization reflects disease severity in patients with sepsis and correlates with clinical outcome. Crit Care (Lond, Engl) 18(1):R31. https://doi.org/10.1186/cc13724

Article  Google Scholar 

Kaiser R, Escaig R, Kranich J et al (2022) Procoagulant platelet sentinels prevent inflammatory bleeding through GPIIBIIIA and PVI. Blood 140(2):121–139. https://doi.org/10.1182/blood.2021014914

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jardín I, López JJ, Pariente JA et al (2008) Intracellular calcium release from human platelets: different messengers for multiple stores. Trends Cardiovasc Med 18(2):57–61. https://doi.org/10.1016/j.tcm.2007.12.004

Article  CAS  PubMed  Google Scholar 

Kannan M, Ahmad F, Saxena R (2019) Platelet activation markers in evaluation of thrombotic risk factors in various clinical settings. Blood reviews 37:100583. https://doi.org/10.1016/j.blre.2019.05.007

Article  CAS  PubMed  Google Scholar 

Brass LF, Shattil SJ (1984) Identification and function of the high affinity binding sites for Ca2+ on the surface of platelets. J Clin Investig 73(3):626–632. https://doi.org/10.1172/JCI111252

Article  CAS  PubMed  PubMed Central  Google Scholar 

Varga-Szabo D, Braun A, Nieswandt B (2009) Calcium signaling in platelets. J Thromb Haemost 7(7):1057–1066. https://doi.org/10.1111/j.1538-7836.2009.03455.x

Article  CAS  PubMed  Google Scholar 

Kannan M, Ahmad F, Yadav BK et al (2008) Carrier detection in Glanzmann thrombasthenia: comparison of flow cytometry and Western blot with respect to DNA mutation. Am J Clin Pathol 130(1):93–98. https://doi.org/10.1309/HYE4AP9961CEP0C0

Article  PubMed  Google Scholar 

Kannan M, Ahmad F, Yadav BK et al (2009) Molecular defects in ITGA2B and ITGB3 genes in patients with Glanzmann thrombasthenia. JTH 7(11):1878–1885. https://doi.org/10.1111/j.1538-7836.2009.03579.x

Article  CAS  PubMed  Google Scholar 

Jakubowski JA, Zhou C, Winters KJ et al (2015) The effect of prasugrel on ADP-stimulated markers of platelet activation in patients with sickle cell disease. Platelets 26(5):474–479. https://doi.org/10.3109/09537104.2014.940887

Article  CAS  PubMed  Google Scholar 

Berney SI, Ridler CD, Stephens AD et al (1992) Enhanced platelet reactivity and hypercoagulability in the steady state of sickle cell anaemia. Am J Hematol 40(4):290–294. https://doi.org/10.1002/ajh.2830400409

Article  CAS  PubMed  Google Scholar 

Tomer A, Harker LA, Kasey S et al (2001) Thrombogenesis in sickle cell disease. J Lab Clin Med 137(6):398–407. https://doi.org/10.1067/mlc.2001.115450

Article  CAS  PubMed  Google Scholar 

Brunson A, Keegan T, Mahajan A et al (2019) High incidence of venous thromboembolism recurrence in patients with sickle cell disease. Am J Hematol 94(8):862–870. https://doi.org/10.1002/ajh.25508

Article  PubMed  PubMed Central  Google Scholar 

Naik RP, Streiff MB, Haywood C et al (2014) Venous thromboembolism incidence in the cooperative study of sickle cell disease. JTH 12(12):2010–2016. https://doi.org/10.1111/jth.12744

Article  CAS  PubMed  Google Scholar 

Jedlička J, Kunc R, Kuncová J (2021) Mitochondrial respiration of human platelets in young adult and advanced age - Seahorse or O2k? Physiol Res https://doi.org/10.33549/physiolres.934812

Palacka P, Gvozdjáková A, Rausová Z et al (2021) Platelet mitochondrial bioenergetics reprogramming in patients with urothelial carcinoma. Int J Mol Sci 23(1):388. https://doi.org/10.3390/ijms23010388

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Z, Cai F, Hu L et al (2014) The role of mitochondrial permeability transition pore in regulating the shedding of the platelet GPIbα. Ectodomain. Platelets 25(5):373–381. https://doi.org/10.3109/09537104.2013.821604

Article  CAS  PubMed  Google Scholar 

Jobe SM, Wilson KM, Leo L et al (2008) Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis. Blood 111(3):1257–1265. https://doi.org/10.1182/blood-2007-05-092684

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cardenes N, Corey C, Geary L et al (2014) Platelet bioenergetic screen in sickle cell patients reveals mitochondrial complex V inhibition, which contributes to platelet activation. Blood 123(18):2864–2872. https://doi.org/10.1182/blood-2013-09-529420

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif