Easy Prediction of the Maximal Lactate Steady-State in Young and Older Men and Women

Maximal Lactate steady-state (MLSS) demarcates sustainable from unsustainable exercise and is used for evaluation/monitoring of exercise capacity. Still, its determination is physically challenging and time-consuming. This investigation aimed at validating a simple, submaximal approach based on blood lactate accumulation ([Δlactate]) at the third minute of cycling in a large cohort of men and women of different ages. 68 healthy adults (40♂, 28♀, 43 ± 17 years (range 19-78), VO2max 45 ± 11 ml-1·kg-1·min-1 (25-68)) performed 3-5 constant power output (PO) trials with a target duration of 30 minutes to determine the PO corresponding to MLSS. During each trial, [Δlactate] was calculated as the difference between the third minute and baseline. A multiple linear regression was computed to estimate MLSS based on [Δlactate], subjects` gender, age and the trial PO. The estimated MLSS was compared to the measured value by paired t-test, correlation, and Bland-Altman analysis. The group mean value of estimated MLSS was 180 ± 51 W, not significantly different from (p = 0.98) and highly correlated with (R2 = 0.89) measured MLSS (180 ± 54 watts). The bias between values was 0.17 watts, and imprecision 18.2 watts. This simple, submaximal, time- and cost-efficient test accurately and precisely predicts MLSS across different samples of healthy individuals (adjusted R2 = 0.88) and offers a practical and valid alternative to the traditional MLSS determination.

留言 (0)

沒有登入
gif