Sulfite Impairs Bioenergetics and Redox Status in Neonatal Rat Brain: Insights into the Early Neuropathophysiology of Isolated Sulfite Oxidase and Molybdenum Cofactor Deficiencies

Alonzo Martínez M, Cazorla E, Cánovas E et al (2020) Molybdenum cofactor deficiency: mega cisterna magna in two consecutive pregnancies and review of the literature. Appl Clin Genet 13:49–55. https://doi.org/10.2147/TACG.S239917

Article  PubMed  PubMed Central  Google Scholar 

Atwal PS, Scaglia F (2016) Molybdenum cofactor deficiency. Mol Genet Metab 117:1–4. https://doi.org/10.1016/j.ymgme.2015.11.010

Article  CAS  PubMed  Google Scholar 

Avila J, Lucas JJ, Pérez M, Hernández F (2004) Role of tau protein in both physiological and pathological conditions. Physiol Rev 84:361–384. https://doi.org/10.1152/physrev.00024.2003

Article  CAS  PubMed  Google Scholar 

Barrie Kitto G (1969) Intra- and extramitochondrial malate dehydrogenases from chicken and tuna heart. Methods Enzymol 13:106–116. https://doi.org/10.1016/0076-6879(69)13023-2

Article  Google Scholar 

Basheer S, Waters P, Lam C et al (2007) Isolated sulfite oxidase deficiency in the newborn: lactic acidaemia and leukoencephalopathy. Neuropediatrics 38:38–41. https://doi.org/10.1055/s-2007-981484

Article  CAS  PubMed  Google Scholar 

Belaidi AA, Röper J, Arjune S et al (2015) Oxygen reactivity of mammalian sulfite oxidase provides a concept for the treatment of sulfite oxidase deficiency. Biochem J 469:211–221. https://doi.org/10.1042/BJ20140768

Article  CAS  PubMed  Google Scholar 

Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738. https://doi.org/10.1016/j.cmet.2011.08.016

Article  CAS  PubMed  Google Scholar 

Bindu PS, Nagappa M, Bharath RD, Taly AB (1993–2023) Isolated sulfite oxidase deficiency. In: Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A (eds) GeneReviews [Internet]. University of Washington, Seattle, Seattle (WA)

Bobermin LD, Roppa RHA, Gonçalves C-A, Quincozes-Santos A (2020) Ammonia-induced glial-inflammaging. Mol Neurobiol 57:3552–3567. https://doi.org/10.1007/s12035-020-01985-4

Article  CAS  PubMed  Google Scholar 

Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. In: Armstrong D (ed) Free radical and antioxidant protocols. Humana Press, Totowa, pp 347–352

Chapter  Google Scholar 

Buée L, Bussière T, Buée-Scherrer V et al (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 33:95–130. https://doi.org/10.1016/S0165-0173(00)00019-9

Article  PubMed  Google Scholar 

Cabral-Costa JV, Kowaltowski AJ (2020) Neurological disorders and mitochondria. Mol Aspects Med 71:100826. https://doi.org/10.1016/j.mam.2019.10.003

Article  CAS  PubMed  Google Scholar 

Carlberg I, Mannervik B (1985) Glutathione reductase. In: Rédei GP (ed) Encyclopedia of genetics, genomics, proteomics and informatics. Springer, Dordrecht, pp 484–490

Google Scholar 

Carmi-Nawi N, Malinger G, Mandel H et al (2011) Prenatal brain disruption in molybdenum cofactor deficiency. J Child Neurol 26:460–464. https://doi.org/10.1177/0883073810383017

Article  PubMed  Google Scholar 

Chiarani F, Bavaresco CS, Dutra-Filho CS et al (2008) Sulfite increases lipoperoxidation and decreases the activity of catalase in brain of rats. Metab Brain Dis 23:123–132. https://doi.org/10.1007/s11011-007-9073-2

Article  CAS  PubMed  Google Scholar 

Chico LK, Van Eldik LJ, Watterson DM (2009) Targeting protein kinases in central nervous system disorders. Nat Rev Drug Discov 8:892–909. https://doi.org/10.1038/nrd2999

Article  CAS  PubMed  PubMed Central  Google Scholar 

Claerhout H, Witters P, Régal L et al (2018) Isolated sulfite oxidase deficiency. J Inherit Metab Dis 41:101–108. https://doi.org/10.1007/s10545-017-0089-4

Article  CAS  PubMed  Google Scholar 

Cornet M-C, Sands TT, Cilio MR (2018) Neonatal epilepsies: clinical management. Semin Fetal Neonatal Med 23:204–212. https://doi.org/10.1016/j.siny.2018.01.004

Article  PubMed  Google Scholar 

da Rosa-Junior NT, Parmeggiani B, da Rosa MS et al (2019) Bezafibrate in vivo administration prevents 3-methylglutaric acid-induced impairment of redox status, mitochondrial biogenesis, and neural injury in brain of developing rats. Neurotox Res 35:809–822. https://doi.org/10.1007/s12640-019-00019-9

Article  CAS  PubMed  Google Scholar 

Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32:40–52. https://doi.org/10.1016/j.biotechadv.2013.09.006

Article  CAS  PubMed  Google Scholar 

de Moura Alvorcem L, da Rosa MS, Glänzel NM et al (2017) Disruption of energy transfer and redox status by sulfite in hippocampus, striatum, and cerebellum of developing rats. Neurotoxicol Res 32:264–275. https://doi.org/10.1007/s12640-017-9732-y

Article  CAS  Google Scholar 

Du W, Hu H, Zhang J et al (2019) The mechanism of MAPK signal transduction pathway involved with electroacupuncture treatment for different diseases. Evid Based Complement Altern Med 2019:1–10. https://doi.org/10.1155/2019/8138017

Article  CAS  Google Scholar 

Durmaz MS, Özbakır B (2018) Molybdenum cofactor deficiency: neuroimaging findings. Radiol Case Rep 13:592–595. https://doi.org/10.1016/j.radcr.2018.02.025

Article  PubMed  PubMed Central  Google Scholar 

Edwards MC, Johnson JL, Marriage B et al (1999) Isolated sulfite oxidase deficiency: review of two cases in one family. Ophthalmology 106:1957–1961. https://doi.org/10.1016/S0161-6420(99)90408-6

Article  CAS  PubMed  Google Scholar 

Espinosa-Diez C, Miguel V, Mennerich D et al (2015) Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 6:183–197. https://doi.org/10.1016/j.redox.2015.07.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fischer JC, Ruitenbeek W, Berden JA et al (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–36. https://doi.org/10.1016/0009-8981(85)90135-4

Article  CAS  PubMed  Google Scholar 

Forman HJ, Zhang H, Rinna A (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med 30:1–12. https://doi.org/10.1016/j.mam.2008.08.006

Article  CAS  PubMed  Google Scholar 

Grings M, Moura AP, Parmeggiani B et al (2013) Disturbance of brain energy and redox homeostasis provoked by sulfite and thiosulfate: potential pathomechanisms involved in the neuropathology of sulfite oxidase deficiency. Gene 531:191–198. https://doi.org/10.1016/j.gene.2013.09.018

Article  CAS  PubMed  Google Scholar 

Grings M, Moura AP, Amaral AU et al (2014) Sulfite disrupts brain mitochondrial energy homeostasis and induces mitochondrial permeability transition pore opening via thiol group modification. Biochim Biophys Acta Mol Basis Dis 1842:1413–1422. https://doi.org/10.1016/j.bbadis.2014.04.022

Article  CAS  Google Scholar 

Grings M, Moura AP, Parmeggiani B et al (2017) Bezafibrate prevents mitochondrial dysfunction, antioxidant system disturbance, glial reactivity and neuronal damage induced by sulfite administration in striatum of rats: implications for a possible therapeutic strategy for sulfite oxidase deficiency. Biochim Biophys Acta Mol Basis Dis 1863:2135–2148. https://doi.org/10.1016/j.bbadis.2017.05.019

Article  CAS  PubMed  Google Scholar 

Grings M, Seminotti B, Karunanidhi A et al (2019) ETHE1 and MOCS1 deficiencies: disruption of mitochondrial bioenergetics, dynamics, redox homeostasis and endoplasmic reticulum-mitochondria crosstalk in patient fibroblasts. Sci Rep 9:12651. https://doi.org/10.1038/s41598-019-49014-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo Y, Pan W, Liu S et al (2020) ERK/MAPK signalling pathway and tumorigenesis (review). Exp Ther Med. https://doi.org/10.3892/etm.2020.8454

Article  PubMed  PubMed Central  Google Scholar 

Hoffmann C, Ben-Zeev B, Anikster Y et al (2007) Magnetic resonance imaging and magnetic resonance spectroscopy in isolated sulfite oxidase deficiency. J Child Neurol 22:1214–1221. https://doi.org/10.1177/0883073807306260

Article  PubMed  Google Scholar 

Holder JL, Agadi S, Reese W et al (2014) Infantile spasms and hyperekplexia associated with isolated sulfite oxidase deficiency. JAMA Neurol 71:782–784. https://doi.org/10.1001/jamaneurol.2013.5083

Article  PubMed  Google Scholar 

Hughes BP (1962) A method for the estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta 7:597–603. https://doi.org/10.1016/0009-8981(62)90137-7

Article  CAS  PubMed  Google Scholar 

Johnson JL (2003) Prenatal diagnosis of molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. Prenat Diagn 23:6–8. https://doi.org/10.1002/pd.505

Article  CAS  PubMed  Google Scholar 

Kim EK, Choi E-J (2015) Compromised MAPK signaling in human diseases: an update. Arch Toxicol 89:867–882. https://doi.org/10.1007/s00204-015-1472-2

Article  CAS  PubMed  Google Scholar 

Klein JM, Schwarz G (2012) Cofactor-dependent maturation of mammalian sulfite oxidase links two mitochondrial import pathways. J Cell Sci. https://doi.org/10.1242/jcs.110114

Article  PubMed  Google Scholar 

Kocamaz E, Adiguzel E, Er B et al (2012) Sulfite leads to neuron loss in the hippocampus of both normal and SOX-deficient rats. Neurochem Int 61:341–346. https://doi.org/10.1016/j.neuint.2012.06.010

留言 (0)

沒有登入
gif