MiR-422a promotes adipogenesis via MeCP2 downregulation in human bone marrow mesenchymal stem cells

Kaludov NK, Wolffe AP (2000) MeCP2 driven transcriptional repression in vitro: selectivity for methylated DNA, action at a distance and contacts with the basal transcription machinery. Nucleic Acids Res 28(9):1921–1928. https://doi.org/10.1093/nar/28.9.1921

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320(5880):1224–1229. https://doi.org/10.1126/science.1153252

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmidt A, Zhang H, Cardoso MC (2020) MeCP2 and chromatin compartmentalization. Cells 9(4):878. https://doi.org/10.3390/cells9040878

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li R, Dong Q, Yuan X, Zeng X, Gao Y, Chiao C, Li H, Zhao X, Keles S, Wang Z et al (2016) Misregulation of alternative splicing in a mouse model of Rett syndrome. PLoS Genet 12(6):e1006129. https://doi.org/10.1371/journal.pgen.1006129

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23(2):185–188. https://doi.org/10.1038/13810

Article  CAS  PubMed  Google Scholar 

Hagberg B, Aicardi J, Dias K, Ramos O (1983) A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: report of 35 cases. Ann Neurol 14(4):471–479. https://doi.org/10.1002/ana.410140412

Article  CAS  PubMed  Google Scholar 

Kyle SM, Saha PK, Brown HM, Chan LC, Justice MJ (2016) MeCP2 co-ordinates liver lipid metabolism with the NCoR1/HDAC3 corepressor complex. Hum Mol Genet 25(14):3029–3041. https://doi.org/10.1093/hmg/ddw156

Article  CAS  PubMed  PubMed Central  Google Scholar 

Justice MJ, Buchovecky CM, Kyle SM, Djukic A (2013) A role for metabolism in Rett syndrome pathogenesis: new clinical findings and potential treatment targets. Rare Dis 1:e27265. https://doi.org/10.4161/rdis.27265

Article  PubMed  PubMed Central  Google Scholar 

Shapiro JR, Bibat G, Hiremath G, Blue ME, Hundalani S, Yablonski T, Kantipuly A, Rohde C, Johnston M, Naidu S (2010) Bone mass in Rett syndrome: association with clinical parameters and MECP2 mutations. Pediatr Res 68(5):446–451. https://doi.org/10.1203/PDR.0b013e3181f2edd2

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Connor RD, Zayzafoon M, Farach-Carson MC, Schanen NC (2009) Mecp2 deficiency decreases bone formation and reduces bone volume in a rodent model of Rett syndrome. Bone 45(2):346–356. https://doi.org/10.1016/j.bone.2009.04.251

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, Cao J, Xie N, Velletri T, Zhang X et al (2016) Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ 23(7):1128–1139. https://doi.org/10.1038/cdd.2015.168

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang H, Hata A (2015) The role of microRNAs in cell fate determination of mesenchymal stem cells: balancing adipogenesis and osteogenesis. BMB Rep 48(6):319–323. https://doi.org/10.5483/bmbrep.2015.48.6.206

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horowitz MC, Berry R, Holtrup B, Sebo Z, Nelson T, Fretz JA, Lindskog D, Kaplan JL, Ables G, Rodeheffer MS et al (2017) Bone marrow adipocytes. Adipocyte 6(3):193–204. https://doi.org/10.1080/21623945.2017.1367881

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cawthorn WP, Scheller EL, Learman BS, Parlee SD, Simon BR, Mori H, Ning X, Bree AJ, Schell B, Broome DT et al (2014) Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab 20(2):368–375. https://doi.org/10.1016/j.cmet.2014.06.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scheller EL, Rosen CJ (2014) What’s the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health. Ann N Y Acad Sci 1311:14–30. https://doi.org/10.1111/nyas.12327

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghaben AL, Scherer PE (2019) Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. https://doi.org/10.1038/s41580-018-0093-z

Article  PubMed  Google Scholar 

Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, Spiegelman BM (2002) C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev 16(1):22–26. https://doi.org/10.1101/gad.948702

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM (1999) PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4(4):611–617

Article  CAS  PubMed  Google Scholar 

Lefterova MI, Haakonsson AK, Lazar MA, Mandrup S (2014) PPARgamma and the global map of adipogenesis and beyond. Trends Endocrinol Metab 25(6):293–302. https://doi.org/10.1016/j.tem.2014.04.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oskowitz A, McFerrin H, Gutschow M, Carter ML, Pochampally R (2011) Serum-deprived human multipotent mesenchymal stromal cells (MSCs) are highly angiogenic. Stem cell Res 6(3):215–225. https://doi.org/10.1016/j.scr.2011.01.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Engin AB (2017) MicroRNA and Adipogenesis. Adv Exp Med Biol 960:489–509. https://doi.org/10.1007/978-3-319-48382-5_21

Article  CAS  PubMed  Google Scholar 

McGregor RA, Choi MS (2011) microRNAs in the regulation of adipogenesis and obesity. Curr Mol Med 11(4):304–316

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hilton C, Neville MJ, Karpe F (2013) MicroRNAs in adipose tissue: their role in adipogenesis and obesity. Int J Obes 37(3):325–332. https://doi.org/10.1038/ijo.2012.59

Article  CAS  Google Scholar 

Wang J, Guan X, Guo F, Zhou J, Chang A, Sun B, Cai Y, Ma Z, Dai C, Li X et al (2013) miR-30e reciprocally regulates the differentiation of adipocytes and osteoblasts by directly targeting low-density lipoprotein receptor-related protein 6. Cell Death Dis 4:e845. https://doi.org/10.1038/cddis.2013.356

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamam D, Ali D, Vishnubalaji R, Hamam R, Al-Nbaheen M, Chen L, Kassem M, Aldahmash A, Alajez NM (2014) microRNA-320/RUNX2 axis regulates adipocytic differentiation of human mesenchymal (skeletal) stem cells. Cell Death Dis 5:e1499. https://doi.org/10.1038/cddis.2014.462

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang XY, Xu YY, Chen WY (2020) MicroRNA-1324 inhibits cell proliferative ability and invasiveness by targeting MECP2 in gastric cancer. Eur Rev Med Pharmacol Sci 24(9):4766–4774. https://doi.org/10.26355/eurrev_202005_21165

Article  PubMed  Google Scholar 

Zhai K, Liu B, Teng J (2020) MicroRNA-212-3p regulates early neurogenesis through the AKT/mTOR pathway by targeting MeCP2. Neurochem Int 137:104734. https://doi.org/10.1016/j.neuint.2020.104734

Article  CAS  PubMed  Google Scholar 

Zhang N, Wei ZL, Yin J, Zhang L, Wang J, Jin ZL (2018) MiR-106a* inhibits oral squamous cell carcinoma progression by directly targeting MeCP2 and suppressing the Wnt/beta-Catenin signaling pathway. Am J Transl Res 10(11):3542–3554

CAS  PubMed  PubMed Central  Google Scholar 

Yao ZH, Yao XL, Zhang Y, Zhang SF, Hu J (2017) miR-132 down-regulates methyl CpG binding protein 2 (MeCP2) during cognitive dysfunction following chronic cerebral hypoperfusion. Curr Neurovasc Res 14(4):385–396. https://doi.org/10.2174/1567202614666171101115308

Article  CAS  PubMed  Google Scholar 

Yan B, Hu Z, Yao W, Le Q, Xu B, Liu X, Ma L (2017) MiR-218 targets MeCP2 and inhibits heroin seeking behavior. Sci Rep 7:40413. https://doi.org/10.1038/srep40413

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao H, Wen G, Huang Y, Yu X, Chen Q, Afzal TA, le Luong A, Zhu J, Ye S, Zhang L et al (2015) MicroRNA-22 regulates smooth muscle cell differentiation from stem cells by targeting methyl CpG-binding protein 2. Arterioscler Thromb Vasc Biol 35(4):918–929. https://doi.org/10.1161/ATVBAHA.114.305212

Article  CAS  PubMed  Google Scholar 

Han K, Gennarino VA, Lee Y, Pang K, Hashimoto-Torii K, Choufani S, Raju CS, Oldham MC, Weksberg R, Rakic P et al (2013) Human-specific regulation of MeCP2 levels in fetal brains by microRNA miR-483-5p. Genes Dev 27(5):485–490. https://doi.org/10.1101/gad.207456.112

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif