ORP9 and ORP10 form a heterocomplex to transfer phosphatidylinositol 4-phosphate at ER-TGN contact sites

Masone MC, Morra V, Venditti R (2019) Illuminating the membrane contact sites between the endoplasmic reticulum and the trans-Golgi network. FEBS Lett 593:3135–3148. https://doi.org/10.1002/1873-3468.13639

Article  CAS  PubMed  Google Scholar 

Prinz WA, Toulmay A, Balla T (2020) The functional universe of membrane contact sites. Nat Rev Mol Cell Biol 21:7–24. https://doi.org/10.1038/s41580-019-0180-9

Article  CAS  PubMed  Google Scholar 

Siehler J, Blochinger AK, Meier M, Lickert H (2021) Engineering islets from stem cells for advanced therapies of diabetes. Nat Rev Drug Discov 20:920–940. https://doi.org/10.1038/s41573-021-00262-w

Article  CAS  PubMed  Google Scholar 

Vance JE (2015) Phospholipid synthesis and transport in mammalian cells. Traffic 16:1–18. https://doi.org/10.1111/tra.12230

Article  CAS  PubMed  Google Scholar 

Stefan CJ, Trimble WS, Grinstein S, Drin G, Reinisch K, De Camilli P, Cohen S, Valm AM, Lippincott-Schwartz J, Levine TP et al (2017) Membrane dynamics and organelle biogenesis-lipid pipelines and vesicular carriers. BMC Biol 15:102. https://doi.org/10.1186/s12915-017-0432-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lev S (2012) Nonvesicular lipid transfer from the endoplasmic reticulum. Cold Spring Harb Perspect Biol 4:a013300. https://doi.org/10.1101/cshperspect.a013300

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reinisch KM, Prinz WA (2021) Mechanisms of nonvesicular lipid transport. J Cell Biol 220:e202012058. https://doi.org/10.1083/jcb.202012058

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wong LH, Gatta AT, Levine TP (2019) Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes. Nat Rev Mol Cell Biol 20:85–101. https://doi.org/10.1038/s41580-018-0071-5

Article  CAS  PubMed  Google Scholar 

Lipp NF, Ikhlef S, Milanini J, Drin G (2020) Lipid exchangers: cellular functions and mechanistic links with phosphoinositide metabolism. Front Cell Dev Biol 8:663. https://doi.org/10.3389/fcell.2020.00663

Article  PubMed  PubMed Central  Google Scholar 

Chiapparino A, Maeda K, Turei D, Saez-Rodriguez J, Gavin AC (2016) The orchestra of lipid-transfer proteins at the crossroads between metabolism and signaling. Prog Lipid Res 61:30–39. https://doi.org/10.1016/j.plipres.2015.10.004

Article  CAS  PubMed  Google Scholar 

Kentala H, Weber-Boyvat M, Olkkonen VM (2016) OSBP-related protein family: mediators of lipid transport and signaling at membrane contact sites. Int Rev Cell Mol Biol 321:299–340. https://doi.org/10.1016/bs.ircmb.2015.09.006

Article  CAS  PubMed  Google Scholar 

Raychaudhuri S, Prinz WA (2010) The diverse functions of oxysterol-binding proteins. Annu Rev Cell Dev Biol 26:157–177. https://doi.org/10.1146/annurev.cellbio.042308.113334

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olkkonen VM (2013) OSBP-related proteins: liganding by glycerophospholipids opens new insight into their function. Molecules 18:13666–13679. https://doi.org/10.3390/molecules181113666

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weber-Boyvat M, Kentala H, Peranen J, Olkkonen VM (2015) Ligand-dependent localization and function of ORP-VAP complexes at membrane contact sites. Cell Mol Life Sci 72:1967–1987. https://doi.org/10.1007/s00018-014-1786-x

Article  CAS  PubMed  Google Scholar 

Kaiser SE, Brickner JH, Reilein AR, Fenn TD, Walter P, Brunger AT (2005) Structural basis of FFAT motif-mediated ER targeting. Structure 13:1035–1045. https://doi.org/10.1016/j.str.2005.04.010

Article  CAS  PubMed  Google Scholar 

Murphy SE, Levine TP (2016) VAP, a versatile access point for the endoplasmic reticulum: review and analysis of FFAT-like motifs in the VAPome. Biochim Biophys Acta 1861:952–961. https://doi.org/10.1016/j.bbalip.2016.02.009

Article  CAS  PubMed  Google Scholar 

Lemmon MA (2007) Pleckstrin homology (PH) domains and phosphoinositides. Biochem Soc Symp 1:81–93. https://doi.org/10.1042/BSS0740081

Article  Google Scholar 

Galmes R, Houcine A, Vliet AR, Agostinis P, Jackson CL, Giordano F (2016) ORP5/ORP8 localize to endoplasmic reticulum–mitochondria contacts and are involved in mitochondrial function. EMBO Rep 17:800–810. https://doi.org/10.15252/embr.201541108

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghai R, Du X, Wang H, Dong J, Ferguson C, Brown AJ, Parton RG, Wu JW, Yang H (2017) ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P 2) and regulate its level at the plasma membrane. Nat Commun 8:757. https://doi.org/10.1038/s41467-017-00861-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mesmin B, Bigay J, Moser von Filseck J, Lacas-Gervais S, Drin G, Antonny B (2013) A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155:830–843. https://doi.org/10.1016/j.cell.2013.09.056

Article  CAS  PubMed  Google Scholar 

Levine TP, Munro S (2002) Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr Biol CB 12:695–704. https://doi.org/10.1016/s0960-9822(02)00779-0

Article  CAS  PubMed  Google Scholar 

Peretti D, Dahan N, Shimoni E, Hirschberg K, Lev S (2008) Coordinated lipid transfer between the endoplasmic reticulum and the Golgi complex requires the VAP proteins and is essential for Golgi-mediated transport. Mol Biol Cell 19:3871–3884. https://doi.org/10.1091/mbc.e08-05-0498

Article  CAS  PubMed  PubMed Central  Google Scholar 

de la Mora E, Dezi M, Di Cicco A, Bigay J, Gautier R, Manzi J, Polidori J, Castano-Diez D, Mesmin B, Antonny B et al (2021) Nanoscale architecture of a VAP-A-OSBP tethering complex at membrane contact sites. Nat Commun 12:3459. https://doi.org/10.1038/s41467-021-23799-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jamecna D, Polidori J, Mesmin B, Dezi M, Levy D, Bigay J, Antonny B (2019) An intrinsically disordered region in OSBP acts as an entropic barrier to control protein dynamics and orientation at membrane contact sites. Dev Cell 49:220–234. https://doi.org/10.1016/j.devcel.2019.02.021

Article  CAS  PubMed  Google Scholar 

Lim CY, Davis OB, Shin HR, Zhang J, Berdan CA, Jiang X, Counihan JL, Ory DS, Nomura DK, Zoncu R (2019) ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann-Pick type C. Nat Cell Biol 21:1206–1218. https://doi.org/10.1038/s41556-019-0391-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan JX, Finkel T (2022) A phosphoinositide signalling pathway mediates rapid lysosomal repair. Nature 609:815–821. https://doi.org/10.1038/s41586-022-05164-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93:1019–1137. https://doi.org/10.1152/physrev.00028.2012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hammond GRV, Burke JE (2020) Novel roles of phosphoinositides in signaling, lipid transport, and disease. Curr Opin Cell Biol 63:57–67. https://doi.org/10.1016/j.ceb.2019.12.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santiago-Tirado FH, Bretscher A (2011) Membrane-trafficking sorting hubs: cooperation between PI4P and small GTPases at the trans-Golgi network. Trends Cell Biol 21:515–525. https://doi.org/10.1016/j.tcb.2011.05.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Matteis MA, Wilson C, D’Angelo G (2013) Phosphatidylinositol-4-phosphate: the Golgi and beyond. BioEssays 35:612–622. https://doi.org/10.1002/bies.201200180

Article  CAS  PubMed  Google Scholar 

Tan J, Brill JA (2014) Cinderella story: PI4P goes from precursor to key signaling molecule. Crit Rev Biochem Mol Biol 49:33–58. https://doi.org/10.3109/10409238.2013.853024

Article  CAS  PubMed  Google Scholar 

Waugh MG (2019) The Great Escape: how phosphatidylinositol 4-kinases and PI4P promote vesicle exit from the Golgi (and drive cancer). Biochem J 476:2321–2346. https://doi.org/10.1042/BCJ20180622

Article  CAS  PubMed  Google Scholar 

Venditti R, Masone MC, Rega LR, Di Tullio G, Santoro M, Polishchuk E, Serrano IC, Olkkonen VM, Harada A, Medina DL et al (2019) The activity of Sac1 across ER-TGN contact sites requires the four-phosphate-adaptor-protein-1. J Cell Biol 218:783–797. https://doi.org/10.1083/jcb.201812021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mesmin B, Bigay J, Polidori J, Jamecna D, Lacas-Gervais S, Antonny B (20

留言 (0)

沒有登入
gif