Distinct roles for SOX2 and SOX21 in differentiation, distribution and maturation of pulmonary neuroendocrine cells

Garg A, Sui P, Verheyden JM, Young LR, Sun X (2019) Consider the lung as a sensory organ: a tip from pulmonary neuroendocrine cells. Curr Top Dev Biol 132:67–89. https://doi.org/10.1016/bs.ctdb.2018.12.002. (Epub 2019/02/25. PubMed PMID: 30797518)

Article  CAS  PubMed  Google Scholar 

Gu X, Karp PH, Brody SL, Pierce RA, Welsh MJ, Holtzman MJ et al (2014) Chemosensory functions for pulmonary neuroendocrine cells. Am J Respir Cell Mol Biol 50(3):637–646. https://doi.org/10.1165/rcmb.2013-0199OC. (Epub 2013/10/19. PubMed PMID: 24134460; PubMed Central PMCID: PMC4068934)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sui P, Wiesner DL, Xu J, Zhang Y, Lee J, Van Dyken S et al (2018) Pulmonary neuroendocrine cells amplify allergic asthma responses. Science. https://doi.org/10.1126/science.aan8546. (Epub 2018/03/31. PubMed PMID: 29599193; PubMed Central PMCID: PMC6387886)

Article  PubMed  PubMed Central  Google Scholar 

Cutz E, Yeger H, Pan J (2007) Pulmonary neuroendocrine cell system in pediatric lung disease-recent advances. Pediatr Dev Pathol 10(6):419–435. https://doi.org/10.2350/07-04-0267.1. (Epub 2007/11/16. PubMed PMID: 18001162)

Article  CAS  PubMed  Google Scholar 

Ijsselstijn H, Gaillard JL, de Jongste JC, Tibboel D, Cutz E (1997) Abnormal expression of pulmonary bombesin-like peptide immunostaining cells in infants with congenital diaphragmatic hernia. Pediatr Res 42(5):715–720. https://doi.org/10.1203/00006450-199711000-00026. (Epub 1997/11/14. PubMed PMID: 9357948)

Article  CAS  PubMed  Google Scholar 

IJsselstijn H, Hung N, de Jongste JC, Tibboel D, Cutz E (1998) Calcitonin gene-related peptide expression is altered in pulmonary neuroendocrine cells in developing lungs of rats with congenital diaphragmatic hernia. Am J Respir Cell Mol Biol 19(2):278–285. https://doi.org/10.1165/ajrcmb.19.2.2853. (Epub 1998/08/12. PubMed PMID: 9698600)

Article  CAS  PubMed  Google Scholar 

van Meerbeeck JP, Fennell DA, De Ruysscher DK (2011) Small-cell lung cancer. Lancet 378(9804):1741–1755. https://doi.org/10.1016/S0140-6736(11)60165-7. (Epub 2011/05/14. PubMed PMID: 21565397)

Article  PubMed  Google Scholar 

Cutz E, Pan J, Yeger H, Domnik NJ, Fisher JT (2013) Recent advances and contraversies on the role of pulmonary neuroepithelial bodies as airway sensors. Semin Cell Dev Biol 24(1):40–50. https://doi.org/10.1016/j.semcdb.2012.09.003. (Epub 2012/10/02. PubMed PMID: 23022441)

Article  PubMed  Google Scholar 

Brouns I, Oztay F, Pintelon I, De Proost I, Lembrechts R, Timmermans JP et al (2009) Neurochemical pattern of the complex innervation of neuroepithelial bodies in mouse lungs. Histochem Cell Biol 131(1):55–74. https://doi.org/10.1007/s00418-008-0495-7. (Epub 2008/09/03. PubMed PMID: 18762965)

Article  CAS  PubMed  Google Scholar 

Kuo CS, Krasnow MA (2015) Formation of a neurosensory organ by epithelial cell slithering. Cell 163(2):394–405. https://doi.org/10.1016/j.cell.2015.09.021. (Epub 2015/10/06. PubMed PMID: 26435104; PubMed Central PMCID: PMC4597318)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barrios J, Patel KR, Aven L, Achey R, Minns MS, Lee Y et al (2017) Early life allergen-induced mucus overproduction requires augmented neural stimulation of pulmonary neuroendocrine cell secretion. FASEB J 31(9):4117–4128. https://doi.org/10.1096/fj.201700115R. (Epub 2017/06/02. PubMed PMID: 28566470; PubMed Central PMCID: PMC5572694)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barrios J, Kho AT, Aven L, Mitchel JA, Park JA, Randell SH et al (2019) Pulmonary neuroendocrine cells secrete gamma-aminobutyric acid to induce goblet cell hyperplasia in primate models. Am J Respir Cell Mol Biol 60(6):687–694. https://doi.org/10.1165/rcmb.2018-0179OC. (Epub 2018/12/21. PubMed PMID: 30571139; PubMed Central PMCID: PMCPMC6543741)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Branchfield K, Nantie L, Verheyden JM, Sui P, Wienhold MD, Sun X (2016) Pulmonary neuroendocrine cells function as airway sensors to control lung immune response. Science 351(6274):707–710. https://doi.org/10.1126/science.aad7969. (Epub 2016/01/09. PubMed PMID: 26743624)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ito T, Udaka N, Yazawa T, Okudela K, Hayashi H, Sudo T et al (2000) Basic helix-loop-helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development 127(18):3913–3921 (PubMed PMID: 10952889)

Article  CAS  PubMed  Google Scholar 

Morimoto M, Nishinakamura R, Saga Y, Kopan R (2012) Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development 139(23):4365–4373. https://doi.org/10.1242/dev.083840. (Epub 2012/11/08. PubMed PMID: 23132245; PubMed Central PMCID: PMC3509731)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jia S, Wildner H, Birchmeier C (2015) Insm1 controls the differentiation of pulmonary neuroendocrine cells by repressing Hes1. Dev Biol 408(1):90–98. https://doi.org/10.1016/j.ydbio.2015.10.009. (Epub 2015/10/11. PubMed PMID: 26453796)

Article  CAS  PubMed  Google Scholar 

Borges M, Linnoila RI, van de Velde HJ, Chen H, Nelkin BD, Mabry M et al (1997) An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 386(6627):852–855 (PubMed PMID: 9126746)

Article  CAS  PubMed  Google Scholar 

Gontan C, de Munck A, Vermeij M, Grosveld F, Tibboel D, Rottier R (2008) Sox2 is important for two crucial processes in lung development: branching morphogenesis and epithelial cell differentiation. Dev Biol 317(1):296–309. https://doi.org/10.1016/j.ydbio.2008.02.035. (Epub 2008/04/01. PubMed PMID: 18374910)

Article  CAS  PubMed  Google Scholar 

Eenjes E, Buscop-van Kempen M, Boerema-de Munck A, Edel GG, Benthem F, de Kreij-de BL et al (2021) SOX21 modulates SOX2-initiated differentiation of epithelial cells in the extrapulmonary airways. Elife. https://doi.org/10.7554/eLife.57325. (Epub 2021/07/22. PubMed PMID: 34286693; PubMed Central PMCID: PMC8331192)

Article  PubMed  PubMed Central  Google Scholar 

Tucker ES, Lehtinen MK, Maynard T, Zirlinger M, Dulac C, Rawson N et al (2010) Proliferative and transcriptional identity of distinct classes of neural precursors in the mammalian olfactory epithelium. Development 137(15):2471–2481. https://doi.org/10.1242/dev.049718. (Epub 2010/06/25. PubMed PMID: 20573694; PubMed Central PMCID: PMCPMC2927697)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Niu W, Zang T, Smith DK, Vue TY, Zou Y, Bachoo R et al (2015) SOX2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Reports 4(5):780–794. https://doi.org/10.1016/j.stemcr.2015.03.006. (Epub 2015/04/30. PubMed PMID: 25921813; PubMed Central PMCID: PMCPMC4437485)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noguchi M, Sumiyama K, Morimoto M (2015) Directed migration of pulmonary neuroendocrine cells toward airway branches organizes the stereotypic location of neuroepithelial bodies. Cell Rep 13(12):2679–2686. https://doi.org/10.1016/j.celrep.2015.11.058. (Epub 2015/12/30. PubMed PMID: 26711336)

Article  CAS  PubMed  Google Scholar 

Weichselbaum M, Everett AW, Sparrow MP (1996) Mapping the innervation of the bronchial tree in fetal and postnatal pig lung using antibodies to PGP 9.5 and SV2. Am J Respir Cell Mol Biol 15(6):703–710. https://doi.org/10.1165/ajrcmb.15.6.8969263. (Epub 1996/12/01. PubMed PMID: 8969263)

Article  CAS  PubMed  Google Scholar 

Pan J, Yeger H, Cutz E (2004) Innervation of pulmonary neuroendocrine cells and neuroepithelial bodies in developing rabbit lung. J Histochem Cytochem 52(3):379–389. https://doi.org/10.1177/002215540405200309. (Epub 2004/02/18. PubMed PMID: 14966205)

Article  CAS  PubMed  Google Scholar 

Tsao PN, Vasconcelos M, Izvolsky KI, Qian J, Lu J, Cardoso WV (2009) Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development 136(13):2297–2307 (PubMed PMID: 19502490)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuzmichev AN, Kim SK, D’Alessio AC, Chenoweth JG, Wittko IM, Campanati L et al (2012) Sox2 acts through Sox21 to regulate transcription in pluripotent and differentiated cells. Curr Biol 22(18):1705–1710. https://doi.org/10.1016/j.cub.2012.07.013. (Epub 2012/08/21. PubMed PMID: 22902753)

Article  CAS  PubMed  Google Scholar 

Mallanna SK, Ormsbee BD, Iacovino M, Gilmore JM, Cox JL, Kyba M et al (2010) Proteomic analysis of Sox2-associated proteins during early stages of mouse embryonic stem cell differentiation identifies Sox21 as a novel regulator of stem cell fate. Stem Cells 28(10):1715–1727. https://doi.org/10.1002/stem.494. (Epub 2010/08/06. PubMed PMID: 20687156; PubMed Central PMCID: PMC3260005)

Article  CAS  PubMed  Google Scholar 

Kamachi Y, Kondoh H (2013) Sox proteins: regulators of cell fate specification and differentiation. Development 140(20):4129–4144. https://doi.org/10.1242/dev.091793. (Epub 2013/10/03. PubMed PMID: 24086078)

Article  CAS  PubMed  Google Scholar 

Matsuda S, Kuwako K, Okano HJ, Tsutsumi S, Aburatani H, Saga Y et al (2012) Sox21 promotes hippocampal adult neurogenesis via the transcriptional repression of the Hes5 gene. J Neurosci 32(36):12543–12557. https://doi.org/10.1523/JNEUROSCI.5803-11.2012. (Epub 2012/09/08. PubMed PMID: 22956844; PubMed Central PMCID: PMCPMC6621257)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stupnikov MR, Yang Y, Mori M, Lu J, Cardoso WV (2019) Jagged and Delta-like ligands control distinct events during airway progenitor cell differentiation. Elife. https://doi.org/10.7554/eLife.50487. (Epub 2019/10/22. PubMed PMID: 31631837; PubMed Central PMCID: PMC6887486)

Article  PubMed  PubMed Central  Google Scholar 

Reynolds SD, Hong KU, Giangreco A, Mango GW, Guron C, Morimoto Y et al (2000) Conditional clara cell ablation reveals a self-renewing progenitor function of pulmonary neuroendocrine cells. Am J Physiol Lung Cell Mol Physiol 278(6):L1256–L1263. https://doi.org/10.1152/ajplung.2000.278.6.L1256. (Epub 2000/06/03. PubMed PMID: 10835332)

Article  CAS  PubMed  Google Scholar 

Ouadah Y, Rojas ER, Riordan DP, Capostagno S, Kuo CS, Krasnow MA (2019) Rare pulmonary neuroendocrine cells are stem cells regulated by Rb, p53, and notch. Cell 179(2):403–16 e23. https://doi.org/10.1016/j.cell.2019.09.010. (Epub 2019/10/05. PubMed PMID: 31585080)

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif