1α,25-Dihydroxyvitamin D3 Regulates microRNA Packaging in Extracellular Matrix Vesicles and Their Release in the Matrix

Haimov H, Shimoni E, Brumfeld V et al (2020) Mineralization pathways in the active murine epiphyseal growth plate. Bone 130:115086. https://doi.org/10.1016/j.bone.2019.115086

Article  CAS  PubMed  Google Scholar 

Emons J, Chagin AS, Sävendahl L et al (2011) Mechanisms of growth plate maturation and epiphyseal fusion. Horm Res Paediatr 75:383–391. https://doi.org/10.1159/000327788

Article  CAS  PubMed  Google Scholar 

Anderson HC (1967) Electron microscopic studies of induced cartilage development and calcification. J Cell Biol 35:81–101. https://doi.org/10.1083/jcb.35.1.81

Article  CAS  PubMed  PubMed Central  Google Scholar 

Golub EE (2009) Role of matrix vesicles in biomineralization. Biochim Biophys Acta 1790:1592–1598. https://doi.org/10.1016/j.bbagen.2009.09.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kirsch T, Wuthier RE (1994) Stimulation of calcification of growth plate cartilage matrix vesicles by binding to type II and X collagens. J Biol Chem 269:11462–11469

Article  CAS  PubMed  Google Scholar 

Anderson HC (2003) Matrix vesicles and calcification. Curr Rheumatol Rep 5:222–226

Article  PubMed  Google Scholar 

Dean DD, Schwartz ZV, Muniz OE et al (1992) Matrix vesicles contain metalloproteinases that degrade proteoglycans. Bone Miner 17:172–176. https://doi.org/10.1016/0169-6009(92)90731-r

Article  CAS  PubMed  Google Scholar 

Nishimura R, Wakabayashi M, Hata K et al (2012) Osterix regulates calcification and degradation of chondrogenic matrices through matrix metalloproteinase 13 (MMP13) expression in association with transcription factor Runx2 during endochondral ossification. J Biol Chem 287:33179–33190. https://doi.org/10.1074/jbc.M111.337063

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asmussen NC, Cohen DJ, Lin Z et al (2021) Specific microRNAs found in extracellular matrix vesicles regulate proliferation and differentiation in growth plate chondrocytes. Calcif Tissue Int 109:455–468. https://doi.org/10.1007/s00223-021-00855-y

Article  CAS  PubMed  Google Scholar 

Boyan BD, Schwartz Z, Carnes DL, Ramirez V (1988) The effects of vitamin D metabolites on the plasma and matrix vesicle membranes of growth and resting cartilage cells in vitro. Endocrinology 122:2851–2860. https://doi.org/10.1210/endo-122-6-2851

Article  CAS  PubMed  Google Scholar 

Schwartz Z, Brooks B, Swain L et al (1992) Production of 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 by growth zone and resting zone chondrocytes is dependent on cell maturation and is regulated by hormones and growth factors. Endocrinology 130:2495–2504. https://doi.org/10.1210/endo.130.5.1572278

Article  CAS  PubMed  Google Scholar 

Boyan BD, Sylvia VL, McKinney N, Schwartz Z (2003) Membrane actions of vitamin D metabolites 1α,25(OH)2D3 and 24R,25(OH)2D3 are retained in growth plate cartilage cells from vitamin D receptor knockout mice. J Cell Biochem 90:1207–1223. https://doi.org/10.1002/jcb.10716

Article  CAS  PubMed  Google Scholar 

Boyan BD, Schwartz Z, Swain LD (1990) Matrix vesicles as a marker of endochondral ossification. Connect Tissue Res 24:67–75

Article  CAS  PubMed  Google Scholar 

Boyan BD, Doroudi M, Scott K, Schwartz Z (2018) Cartilage. Vitamin D. Elsevier, Hoboken, pp 405–417

Chapter  Google Scholar 

Lin Z, Rodriguez NE, Zhao J et al (2016) Selective enrichment of microRNAs in extracellular matrix vesicles produced by growth plate chondrocytes. Bone 88:47–55. https://doi.org/10.1016/j.bone.2016.03.018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asmussen N, Lin Z, McClure MJ et al (2019) Regulation of extracellular matrix vesicles via rapid responses to steroid hormones during endochondral bone formation. Steroids 142:43–47. https://doi.org/10.1016/j.steroids.2017.12.003

Article  CAS  PubMed  Google Scholar 

Sirajudeen S, Shah I, Al Menhali A (2019) A narrative role of vitamin D and its receptor: with current evidence on the gastric tissues. Int J Mol Sci 20:3832. https://doi.org/10.3390/ijms20153832

Article  PubMed  PubMed Central  Google Scholar 

Maestro MA, Molnár F, Mouriño A, Carlberg C (2016) Vitamin D receptor 2016: novel ligands and structural insights. Expert Opin Ther Pat 26:1291–1306. https://doi.org/10.1080/13543776.2016.1216547

Article  CAS  PubMed  Google Scholar 

Masuyama R, Stockmans I, Torrekens S et al (2006) Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J Clin Invest 116:3150–3159. https://doi.org/10.1172/JCI29463

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwartz N, Verma A, Bivens CB et al (2016) Rapid steroid hormone actions via membrane receptors. BBA Mol Cell Res 1863:2289–2298. https://doi.org/10.1016/j.bbamcr.2016.06.004

Article  CAS  Google Scholar 

Fleet JC (1999) Vitamin D receptors: not just in the nucleus anymore. Nutr Rev 57:60–62. https://doi.org/10.1111/j.1753-4887.1999.tb01779.x

Article  CAS  PubMed  Google Scholar 

Schwartz Z, Shaked D, Hardin RR et al (2003) 1alpha,25(OH)2D3 causes a rapid increase in phosphatidylinositol-specific PLC-beta activity via phospholipase A2-dependent production of lysophospholipid. Steroids 68:423–437. https://doi.org/10.1016/s0039-128x(03)00044-8

Article  CAS  PubMed  Google Scholar 

Boyan BD, Sylvia VL, Dean DD, Schwartz Z (2003) Vitamin D and cartilage. Encyclopedia of hormones. Academic Press, London, pp 592–598

Chapter  Google Scholar 

Christakos S, Ajibade DV, Dhawan P et al (2010) Vitamin D: metabolism. Endocrinol Metab 39:243–253. https://doi.org/10.1016/j.ecl.2010.02.002.Vitamin

Article  CAS  Google Scholar 

Boyan BD, Wong KL, Fang M, Schwartz Z (2007) 1alpha,25(OH)2D3 is an autocrine regulator of extracellular matrix turnover and growth factor release via ERp60 activated matrix vesicle metalloproteinases. J Steroid Biochem Mol Biol 103:467–472. https://doi.org/10.1016/j.jsbmb.2006.11.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nemere I, Schwartz Z, Pedrozo H et al (1998) Identification of a membrane receptor for 1,25-dihydroxyvitamin D3 which mediates rapid activation of protein kinase C. J bone Miner Res 13:1353–1359. https://doi.org/10.1359/jbmr.1998.13.9.1353

Article  CAS  PubMed  Google Scholar 

Boyan BD, Asmussen NC, Lin Z, Schwartz Z (2022) The role of matrix-bound extracellular vesicles in the regulation of endochondral bone formation. Cells 11:1619. https://doi.org/10.3390/cells11101619

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wuthier RE, Lipscomb GF (2011) Matrix vesicles: structure, composition, formation and function in calcification. Front Biosci 16:2812–2902. https://doi.org/10.1095/biolreprod.107.067082

Article  CAS  Google Scholar 

Boyan BD, Schwartz Z (2009) 1,25-Dihydroxy vitamin D3 is an autocrine regulator of extracellular matrix turnover and growth factor release via ERp60-activated matrix vesicle matrix metalloproteinases. Cells Tissues Organs 189:70–74. https://doi.org/10.1159/000152916

Article  CAS  PubMed  Google Scholar 

Maeda S, Dean DD, Gay I et al (2001) Activation of latent transforming growth factor beta1 by stromelysin 1 in extracts of growth plate chondrocyte-derived matrix vesicles. J Bone Miner Res 16:1281–1290. https://doi.org/10.1359/jbmr.2001.16.7.1281

Article  CAS  PubMed  Google Scholar 

Gay I, Schwartz Z, Sylvia VL, Boyan BD (2004) Lysophospholipid regulates release and activation of latent TGF-beta1 from chondrocyte extracellular matrix. BBA Mol Cell Biol Lipids 1684:18–28. https://doi.org/10.1016/j.bbalip.2004.04.006

Article  CAS  Google Scholar 

Lin Z, McClure MJ, Zhao J et al (2018) MicroRNA contents in matrix vesicles produced by growth plate chondrocytes are cell maturation dependent. Sci Rep 8:3609. https://doi.org/10.1038/s41598-018-21517-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lisse TS, Adams JS, Hewison M (2013) Vitamin D and microRNAs in bone. Crit Rev Eukaryot Gene Expr 23:195–214. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2013007147

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boyan BD, Schwartz Z, Swain LD et al (1988) Differential expression of phenotype by resting zone and growth region costochondral chondrocytes in vitro. Bone 9:185–194. https://doi.org/10.1016/8756-3282(88)90008-7

Article  CAS  PubMed  Google Scholar 

Boyan BD, Schwartz Z, Park-Snyder S et al (1994) Latent transforming growth factor-beta is produced by chondrocytes and activated by extracellular matrix vesicles upon exposure to 1,25-(OH)2D3. J Biol Chem 269:28374–28381

Article  CAS  PubMed  Google Scholar 

Sylvia VL, Gay I, Hardin R et al (2002) Rat costochondral chondrocytes produce 17beta-estradiol and regulate its production by 1alpha,25(OH)(2)D(3). Bone 30:57–63. https://doi.org/10.1016/s8756-3282(01)00630-5

留言 (0)

沒有登入
gif