Fine-scale spatial variation shape fecal microbiome diversity and composition in black-tailed prairie dogs (Cynomys ludovicianus)

Trevelline BK, Fontaine SS, Hartup BK, Kohl KD. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc R Soc B Biol Sci. 2019;286:1–9.

Google Scholar 

Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature. 2017;548:43–51. https://doi.org/10.1038/nature23292.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flint HJ, Bayer EA. Plant cell wall breakdown by anaerobic microorganisms from the mammalian digestive tract. Ann NY Acad Sci. 2008;1125:280–8.

Article  CAS  PubMed  Google Scholar 

Ren T, Boutin S, Humphries MM, et al. Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels. Microbiome. 2017;5:163. https://doi.org/10.1186/s40168-017-0382-3.

Article  PubMed  PubMed Central  Google Scholar 

Nieuwdorp M, Gilijamse PW, Pai N, Kaplan LM. Role of the microbiome in energy regulation and metabolism. Gastroenterology. 2014;146:1525–33. https://doi.org/10.1053/j.gastro.2014.02.008.

Article  CAS  PubMed  Google Scholar 

Sommer F, Stahlman M, Ilkayeva O, Arnemo JM, Kindberg J, Josefsson J, Newgard CB, Frobert O, Backhed F. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 2016;14:1655–61.

Article  CAS  PubMed  Google Scholar 

Schluter J, Peled JU, Taylor BP, Markey KA, Smith M, Taur Y, et al. The gut microbiota is associated with immune cell dynamics in humans. Nature. 2020;588:303–7. https://doi.org/10.1038/s41586-020-2971-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dieterich W, Schink M, Zopf Y. Microbiota of the gastrointestinal tract. Med Sci. 2018;6:116. https://doi.org/10.3390/medsci6040116.

Article  CAS  Google Scholar 

Kylie J, Weese JS, Turner PV. Comparison of the fecal microbiota of domestic commercial meat, laboratory, companion, and shelter rabbits (Oryctolagus cuniculi). BMC Vet Res. 2018;14:143. https://doi.org/10.1186/s12917-018-1464-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suzuki TA, Nachman MW. Spatial Heterogeneity of Gut Microbial Composition along the Gastrointestinal Tract in Natural Populations of House Mice. PLoS ONE. 2016;11: e0163720. https://doi.org/10.1371/journal.pone.0163720.

Tang Q, Jin G, Wang G, Liu T, Liu X, Wang B, Cao H. Current Sampling Methods for Gut Microbiota: A Call for More Precise Devices. Front Cell Infect Microbiol. 2020;10:151. https://doi.org/10.3389/fcimb.2020.00151.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goertz S, de Menezes AB, Birtles RJ, Fenn J, Lowe AE, MacColl ADC, et al. Geographical location influences the composition of the gut microbiota in wild house mice (Mus musculus domesticus) at a fine spatial scale. PLoS One. 2019;14:e0222501. https://doi.org/10.1371/journal.pone.0222501.

Suzuki TA, Worobey M. Geographical variation of human gut microbial composition. Biol Lett. 2014;10:20131037. https://doi.org/10.1098/rsbl.2013.1037.

Article  PubMed  PubMed Central  Google Scholar 

Weldon L, Abolins S, Lenzi L, Bourne C, Riley EM, Viney M. The gut microbiota of wild mice. PLoS One. 2015;10: e0134643. https://doi.org/10.1371/journal.pone.0134643.

Linnenbrink M, Wang J, Hardouin EA, Künzel S, Metzler D, Baines JF. The role of biogeography in shaping diversity of the intestinal microbiota in house mice. Mol Ecol. 2013;22:1904–16.

Article  PubMed  Google Scholar 

Ley RE, Lozupone CA, Hamady M, et al. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol. 2008;6:776–88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336:1268–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flint HJ, Duncan SH, Louis P. Impact of intestinal microbial communities upon health. In: Rosenberg E, Gophna U, editors. Beneficial Microorganisms in Multicellular Life Forms. Berlin: Springer; 2011. p. 243–52.

Google Scholar 

Bradley CA, Altizer S. Urbanization and the ecology of wildlife diseases. Trends Ecol Evol. 2007;22:95–102. https://doi.org/10.1016/j.tree.2006.11.001.

Article  PubMed  Google Scholar 

Prange S, Gehrt SD, Wiggers EP. Influences of anthropogenic resources on raccoon (Procyon lotor) movements and spatial distribution. J Mammal. 2004;85:483–90.

Article  Google Scholar 

Duchamp JE, Sparks DW, Whitaker JO Jr. Foraging-habitat selection by bats at an urban–rural interface: comparison between a successful and a less successful species. Can J Zool. 2004;82:1157–64.

Article  Google Scholar 

Hawley DM, Hallinger KK, Cristol DA. Compromised immune competence in free-living tree swallows exposed to mercury. Ecotoxicology. 2009;18:499–503. https://doi.org/10.1007/s10646-009-0307-4.

Article  CAS  PubMed  Google Scholar 

Gering JC, Blair RB. Predation on artificial bird nests along an urban gradient: predatory risk or relaxation in urban environments? Ecography. 1999;22:532–41.

Article  Google Scholar 

Schmidt C, Treberg JR, Kinnunen RP, Garroway CJ. Serum biochemistry suggests grey squirrels (Sciurus carolinensis) have poorer physiological condition in urban settings. bioRxiv. 2019;5–10.

Schulte-Hostedde AI, Mazal Z, Jardine CM, Gagnon J. Enhanced access to anthropogenic food waste is related to hyperglycemia in raccoons (Procyon lotor). Conserv Physiol. 2018;6:1–6.

Article  Google Scholar 

Lyons J, Mastromonaco G, Edwards DB, Schulte-Hostedde AI. Fat and happy in the city: eastern chipmunks in urban environments. Behav Ecol. 2017;28:1464–71. https://doi.org/10.1093/beheco/arx109.

Article  Google Scholar 

Teyssier A, Matthysen E, Hudin NS, de Neve L, White J, Lens L. Diet contributes to urban-induced alterations in gut microbiota: experimental evidence from a wild passerine. Proc R Soc B. 2020;287:20192182. https://doi.org/10.1098/rspb.2019.2182.

Article  PubMed  PubMed Central  Google Scholar 

Phillips JN, Berlow M, Derryberry EP. The effects of landscape urbanization on the gut microbiome: an exploration into the gut of urban and rural white-crowned sparrows. Front Ecol Evol. 2018;6:148. https://doi.org/10.3389/fevo.2018.00148.

Article  Google Scholar 

Bletz MC, Goedbloed D, Sanchez E, et al. Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nat Commun. 2016;7:13699. https://doi.org/10.1038/ncomms13699.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sullam KE, Essinger SD, Lozupone CA, O’connor MP, Rosen GL, Knight R, Kilham S, Russell J. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol. 2012;21:3363–78. https://doi.org/10.1111/j.1365-294X.2012.05552.x.

Article  PubMed  Google Scholar 

Klomp JE, Murphy MT, Smith SB, McKay JE, Ferrera I, Reysenbach AL. Cloacal microbial communities of female spotted towhees Pipilo maculatus: microgeographic variation and individual sources of variability. J Avian Biol. 2008;39:530–8. https://doi.org/10.1111/j.0908-8857.2008.04333.x.

Article  Google Scholar 

Mazel F, Davis KM, Loudon A, Kwong WK, Groussin M, Parfrey LW. Is host filtering the main driver of phylosymbiosis across the tree of life? mSystems. 2018;3:e00097–18. https://doi.org/10.1128/mSystems.00097-18.

Stothart MR, Newman AEM. Shades of grey: host phenotype dependent effect of urbanization on the bacterial microbiome of a wild mammal. Anim Microbiome. 2021;3:46. https://doi.org/10.1186/s42523-021-00105-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Plummer KE, Siriwardena GM, Conway GJ, Risely K, Toms MP. Is supplementary feeding in gardens a driver of evolutionary change in a migratory bird species? Glob Change Biol. 2015;21:4353–63. https://doi.org/10.1111/gcb.13070.

Article  Google Scholar 

Baniel A, Amato KR, Beehner JC, et al. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome. 2021;9:26. https://doi.org/10.1186/s40168-020-00977-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maurice CF, Knowles SCL, Ladau J, Pollard KS, Fenton A, Pedersen AB, Turnbaugh PJ. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 2015;9:2423–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microbial Ecol. 2015;69:434–43.

Article  CAS  Google Scholar 

Rudman SM, Greenblum S, Hughes RC, Rajpurohit S, Kiratli O, Lowder DB, Lemmon SG, Petrov DA, Chaston JM, Schmidt P. Microbiome composition shapes rapid genomic adaptation of Drosophila melanogaster. Proc Natl Acad Sci U S A. 2019;116:20025–32. https://doi.org/10.1073/pnas.

Article  PubMed  PubMed Central  Google Scholar 

Walters AW, Matthews MK, Hughes RC, Malcolm J, Rudman S, Newell PD, et al. The microbiota influences the Drosophila melanogaster life history strategy. bioRxiv. 2018;29:639–653. https://doi.org/10.1111/mec.15344.

Zhang W, Li N, Tang X, Liu N, Zhao W. Changes in intestinal microbiota across an altitudinal gradient in the lizard Phrynocephalus vlangalii. Ecol Evol. 2018;8:4695–703.

Article  PubMed  PubMed Central  Google Scholar 

Reese AT, Kearney SM. Incorporating functional trade-offs into studies of the gut microbiota. Curr Opin Microbiol. 2019;50:20–7.

Article  CAS  PubMed  Google Scholar 

Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, et al. The role of gut microbes in satisfying the nutritional demands of adult and juvenile wild, black howler monkeys (Alouatta pigra). Am J Phys Anthropol. 2014;155:652–64.

Article  PubMed  Google Scholar 

Hoogland JL. Conservation of the Black-Tailed Prairie Dog: Saving North America’s Western Grasslands. DC. Illumina MiSeq, San Diego, USA.: Island Press, Washington; 2006.

Google Scholar 

留言 (0)

沒有登入
gif