Immunogenicity of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Transfer

FDA approves hereditary blindness gene therapy. Nat Biotechnol. 2018;36(1):6.

Gene therapy’s next installment. Nat Biotechnol. 2019;37(7):697.

Nathwani AC, McIntosh J, Sheridan R. Liver Gene Therapy. Hum Gene Ther. 2022;33(17–18):879–88.

Article  CAS  PubMed  Google Scholar 

Kotterman MA, Chalberg TW, Schaffer DV. Viral vectors for gene therapy: translational and clinical outlook. Annu Rev Biomed Eng. 2015;17:63–89.

Article  CAS  PubMed  Google Scholar 

Pipe S, et al. Clinical considerations for capsid choice in the development of liver-targeted AAV-based gene transfer. Mol Ther Methods Clin Dev. 2019;15:170–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Viney L, et al. Adeno-associated virus (AAV) capsid chimeras with enhanced infectivity reveal a core element in the AAV genome critical for both cell transduction and capsid assembly. J Virol. 2021;95(7):e02023-e2120.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Atchison RW, Casto BC, Hammon WM. Adenovirus-associated defective virus particles. Science. 1965;149(3685):754–6.

Article  CAS  PubMed  Google Scholar 

Gao G, et al. Clades of Adeno-associated viruses are widely disseminated in human tissues. J Virol. 2004;78(12):6381–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mingozzi F. KA High, Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet. 2011;12(5):341–55.

Article  CAS  PubMed  Google Scholar 

Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet. 2020;21(4):255–72.

Article  CAS  PubMed  Google Scholar 

Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18(5):358–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Louis Jeune V, et al. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. Hum Gene Ther Methods. 2013;24(2):59–67.

Article  CAS  PubMed  Google Scholar 

Samelson-Jones BJ, et al. Timing of intensive immunosuppression impacts risk of transgene antibodies after AAV gene therapy in nonhuman primates. Mol Ther Methods Clin Dev. 2020;17:1129–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manno CS, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med. 2006;12(3):342–7.

Article  CAS  PubMed  Google Scholar 

Bainbridge JW, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2231–9.

Article  CAS  PubMed  Google Scholar 

Flotte TR, et al. AAV gene therapy for Tay-Sachs disease. Nat Med. 2022;28(2):251–9.

Article  CAS  PubMed  Google Scholar 

Samaranch L, et al. Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates. Hum Gene Ther. 2012;23(4):382–9.

Article  CAS  PubMed  Google Scholar 

Fitzpatrick Z, et al. Influence of pre-existing anti-capsid neutralizing and binding antibodies on AAV vector transduction. Mol Ther Methods Clin Dev. 2018;9:119–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hinderer C, et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum Gene Ther. 2018;29(3):285–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilson JM, Flotte TR. Moving forward after two deaths in a gene therapy trial of myotubular myopathy. Hum Gene Ther. 2020;31(13–14):695–6.

Article  CAS  PubMed  Google Scholar 

Nathwani AC, et al. Adenovirus-associated virus vector–mediated gene transfer in hemophilia B. N Engl J Med. 2011;365(25):2357–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hensley SE, et al. Type I interferon inhibits antibody responses induced by a chimpanzee adenovirus vector. Mol Ther. 2007;15(2):393–403.

Article  CAS  PubMed  Google Scholar 

Goubau D, Deddouche S, Reis e Sousa C. Cytosolic sensing of viruses. Immunity. 2013;38(5):855–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20.

Article  CAS  PubMed  Google Scholar 

Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol. 2007;7(3):179–90.

Article  CAS  PubMed  Google Scholar 

Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14(1):36–49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuranda K, et al. Exposure to wild-type AAV drives distinct capsid immunity profiles in humans. J Clin Invest. 2018;128(12):5267–79.

Article  PubMed  PubMed Central  Google Scholar 

Rogers GL, et al. Plasmacytoid and conventional dendritic cells cooperate in crosspriming AAV capsid-specific CD8(+) T cells. Blood. 2017;129(24):3184–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shirley JL, et al. Type I IFN sensing by cDCs and CD4(+) T cell help are both requisite for cross-priming of AAV capsid-specific CD8(+) T cells. Mol Ther. 2020;28(3):758–70.

Article  CAS  PubMed  Google Scholar 

Rogers GL, et al. Unique roles of TLR9- and MyD88-dependent and -independent pathways in adaptive immune responses to AAV-mediated gene transfer. J Innate Immun. 2015;7(3):302–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ronzitti G, Gross DA, Mingozzi F. Human immune responses to adeno-associated virus (AAV) vectors. Front Immunol. 2020;11:670.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84.

Article  CAS  PubMed  Google Scholar 

Satoh T, S Akira. Toll-like receptor signaling and its inducible proteins. Microbiol Spectr. 2016;4(6). https://doi.org/10.1128/microbiolspec.MCHD-0040-2016.

Zhu J, Huang X, Yang Y. The TLR9-MyD88 pathway is critical for adaptive immune responses to adeno-associated virus gene therapy vectors in mice. J Clin Invest. 2009;119(8):2388–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ashley SN, et al. TLR9 signaling mediates adaptive immunity following systemic AAV gene therapy. Cell Immunol. 2019;346: 103997.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rabinowitz, J., Y.K. Chan, and R.J. Samulski, Adeno-associated Virus (AAV) versus Immune Response. Viruses. 2019;11(2). 102; https://doi.org/10.3390/v11020102.

Wright JF. Codon modification and PAMPs in clinical AAV vectors: the tortoise or the hare? Mol Ther. 2020;28(3):701–3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gustafsson C, Govindarajan S, Minshull J. Codon bias and heterologous protein expression. Trends Biotechnol. 2004;22(7):346–53.

Article  CAS  PubMed  Google Scholar 

Huang X, Yang Y. Targeting the TLR9-MyD88 pathway in the regulation of adaptive immune responses. Expert Opin Ther Targets. 2010;14(8):787–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faust SM, et al. CpG-depleted adeno-associated virus vectors evade immune detection. J Clin Invest. 2013;123(7):2994–3001.

留言 (0)

沒有登入
gif